Umonakalo endaweni yomgwaqo—njengezimbobo, imifantu, nokuguguleka—awugcini nje ngokubeka engcupheni ukuphepha ukushayela kodwa futhi ubeka izindleko ezinkulu zokulungisa kuhulumeni kanye neminyango yezokuthutha emhlabeni wonke. NgokweNhlangano Yabasebenzi Bakamasipala baseMelika (ASCE), iMelika yodwa izodinga izigidigidi ezingama-435 zamadola ukulungisa nokuthuthukisa ingqalasizinda yemigwaqo yayo ngo-2030. Izindlela zokuhlola imigwaqo ezijwayelekile, ezisekelwe emaphethrolini abantu noma ezimotweni ezikhethekile ezibizayo, azisebenzi, zithatha isikhathi esiningi, futhi zingaba namaphutha omuntu. Eminyakeni yamuva nje,camera visionubuchwepheshe, obunikezwe amandla yi-artificial intelligence (AI) kanye ne-machine learning (ML), buye bavele njengoguquguqu umdlalo ekutholeni umonakalo wemigwaqo. Ngokungafani nezindlela zakudala ezivele "zithole umonakalo okhona," izinhlelo zesimanje zokubona ngezithombe ziyaqhubeka "ziqagulele umonakalo ongase ube khona," ziguqule indlela esigcina ngayo ingqalasizinda yemigwaqo. Lesi sihloko sizocubungula izimiso zokusebenza, ukuqhubeka kobuchwepheshe, izicelo ezingokoqobo, kanye nezinga elizayo lokubona ngezithombe ekutholeni umonakalo wezinga lomgwaqo. 1. The Core Logic: How Camera Vision "Sees" Road Damage
At its heart, camera vision-based road damage detection is a process of converting visual information into actionable data through three key steps: image acquisition, feature extraction, and damage classification. What distinguishes it from human vision is its ability to identify subtle, imperceptible damage cues and process massive amounts of data objectively and efficiently.
1.1 Image Acquisition: Capturing Clear Road Data in Diverse Environments
Isinyathelo sokuqala ekutholeni izithombe zomgwaqo ezisezingeni eliphezulu, okuncike kumahadiweyi ekhamera athuthukile nezixazululo zokufakwa eziguquguqukayo. Ngokungafani namakhamera angashintshi angase aqala anomkhawulo wokubuka, izinhlelo zesimanje zisebenzisa izinhlobo ezahlukene zamakhamera ukuze zivumelane nezimo ezahlukene:
Amakhamera asebhodi: Afakwe ezimotweni ezijikelezayo ezijwayelekile, amatekisi, noma izithuthi zomphakathi, la makhamera athwebula izithombe zomgwaqo ngesikhathi sangempela njengoba imoto ihamba. Ifakwe izinzwa ezine-resolution ephezulu (ngokuvamile i-4K noma ngaphezulu) nobuchwepheshe obulwa nokunyakaza, angagcina ukucaca kwezithombe ngisho nasemazingeni esivinini angama-60-80 km/h.
• Izindiza ezingenamuntu (Drones): Izindiza ezingenamuntu (UAVs) ezinamakhamera angenhla zisetshenziselwa ukuhlola izindawo ezinkulu zomgwaqo, njengezindlela ezinkulu noma imigwaqo yasemakhaya. Zingakwazi ukumboza ngokushesha izindawo ezinzima ukufinyelela kuzo (isibonelo, imigwaqo yasezintabeni) futhi zinikeze umbono obanzi wezimo zomgwaqo, kusiza ekutholeni umonakalo omkhulu njengokuwa komgwaqo.
• Amakhamera okuqapha: Afakwe ezindaweni ezibalulekile (isib. izimpambano zezindlela, imihume, noma amabhuloho), la makhamera aqapha njalo isimo sezindlela. Aphumelela kakhulu ekutholeni umonakalo odalwe yizimo ezingalindelekile, njengemvula enkulu noma izingozi zezimoto.
Inselelo enkulu ekutholeni izithombe ukubhekana nezimo zemvelo ezingezinhle, njengokukhanya okuphansi (ubusuku), imvula, inkungu, noma ilanga eliqinile. Ukubhekana nalokhu, izinhlelo zamakhamera zesimanje zihlanganisa ubuchwepheshe bokukhanyisa obuguquguqukayo kanye nama-algorithm wokuthuthukisa izithombe. Ngokwesibonelo, amakhamera okubona ebusuku asebenzisa izinzwa ze-infrared ukwengeza ukukhanya, kanti ukucubungula izithombe okwenziwa yi-AI kungakhipha umsindo odalwa yimvula noma inkungu, kuqinisekisa ukuthi ukuhlaziywa okulandelayo kusekelwe kudatha ethembekile.
1.2 Ukukhipha Izici: I-AI Ibonisa "Izimpawu Zomonakalo"
Uma izithombe ezisezingeni eliphezulu sezitholakele, uhlelo ludinga ukukhipha izici ezihlukile ezihlukanisa umonakalo wemigwaqo ezindaweni ezijwayelekile zemigwaqo. Kulapho ubuchwepheshe bokufunda ngomshini, ikakhulukazi ubuchwepheshe bokufunda obujulile, budlala indima enkulu. Izindlela zokucubungula izithombe zakudala zazisekelwe ekwakhiweni kwezici ezenziwa ngesandla (isibonelo, ukuthola imiphetho, ukuhlaziya izakhiwo), okwakunzima ukuzivumelanisa nokuhlukahluka komonakalo wemigwaqo (isibonelo, izimbobo ezinezinhlobonhlobo ezinkulu, izinhlobo ezahlukene zokuqhekeka). Ngokuphambene, ubuchwepheshe bokufunda obujulile buvumela uhlelo ukuthi lufunde ngokuzenzakalelayo "izimpawu zomlilo" kusuka kumadatha amakhulu wezithombe ezinamalebula.
Ama-Convolutional Neural Networks (CNNs) yiwona asetshenziswa kakhulu kulesi sigaba. I-CNN iqukethe izendlalelo eziningi zokuhlanganisa (convolutional layers) ezingakwazi ukuthola ngokuzenzakalelayo izici ezingezansi (ezifana nemiphetho, izindwangu) nezici eziphakeme (ezifana nesimo somgodi, iphethini lesikhala) ezithombeni. Ngokwesibonelo, lapho kucutshungulwa isithombe somgodi, isendlalelo sokuqala sokuhlanganisa sithola imiphetho yendawo emnyama engaphakathi komgodi, kanti izendlalelo ezilandelayo zihlanganisa le miphetho ukwakha isimo somgodi, siyihlukanise kwezinye izindawo ezimnyama (ezifana nezithunzi).
Ukuthuthukisa ukunemba kokukhipha izici, abacwaningi baye bathuthukisa amamodeli athuthukisiwe e-CNN, njenge-Faster R-CNN ne-YOLO (You Only Look Once). I-YOLO, ikakhulukazi, iyathandwa ukutholwa ngesikhathi sangempela ngoba icubungula isithombe sonke ngesikhathi esisodwa, esikhundleni sokusihlukanisa sibe izindawo eziningi. Lokhu kuyivumela ukuthi ithole umonakalo womgwaqo kungakapheli amamilisecondi, okwenza ilungele izinhlelo zokuhlola ngesikhathi sangempela ezithwalwa emotweni.
1.3 Ukuhlukaniswa Komonakalo: Ukuhlela Nokulinganisa Umonakalo
Ngemuva kokukhipha izici, uhlelo luhlukanisa umonakalo futhi lulinganise ubukhali bawo—ulwazi olubalulekile ezinqumweni zokugcinwa. Izinhlobo ezivamile zomhlahlandlela womonakalo zihlanganisa:
Amaqhume: Imifantu ebusweni bomgwaqo ebangelwa ukungena kwamanzi nokulayisha izimoto kaninginingi.
Cracks: Divided into transverse cracks (perpendicular to traffic direction) and longitudinal cracks (parallel to traffic), caused by thermal expansion and contraction or structural fatigue.
Rutting: Grooves formed by asphalt deformation under high temperatures and repeated vehicle pressure.
1. Ukushelela: Ukulahleka kwezinto ezakhiwe umgwaqo, okuholela ekunciphisweni kokungqubuzana.
Uhlelo lusebenzisa izici ezikhethiwe ukuhlukanisa uhlobo lomonakalo bese lulinganisa izinkomba ezifana nosayizi (isibonelo, ububanzi bejuba lemigodi, ubude beqhekeko), ukujula (emigodini), nobubanzi (beqhekezi). Lesi silinganiso sisekelwe kumapharamitha ekhamera alinganiswe kusengaphambili—isibonelo, ibanga phakathi kwekhamera nomgwaqo, kanye nobude befocal lens—okuvumela uhlelo ukuthi liguqule amanani e-pixel esithombeni abe ubukhulu bangempela.
Ngokwesibonelo, uma ikhamera ifakwe amamitha angu-2 ngaphezu komgwaqo inomumo wokugxila (focal length) wama-50mm, imbobo engu-100 pixels esithombeni ingabalwa ukuthi inobubanzi bangempela obungamasentimitha angu-30. Lolu lwazi olulinganiselwe lusiza iminyango yezokuthutha ukuthi ibeke phambili ukulungiswa: imbobo enobubanzi obungaphezu kwamase-ntimitha angu-50 noma isikhala eside ngamamitha angu-10 sizobekwa njengento ebaluleke kakhulu ukuyilungisa.
2. Ukuqhubeka Kobuchwepheshe: Kusukela Ekubona Okungasebenzi kuya Ekubikezeleni Okusebenzayo
Isigaba sokuqala sokutholwa kwezinkinga zomgwaqo esisekelwe ekuboneni kwamakhamera sagxila ekubeni "kubonwe okungasebenzi"—lokho ukuthi, ukuthola izinkinga ezikhona kakade. Kodwa-ke, ngokuthuthuka kwe-AI kanye nedatha enkulu, ubuchwepheshe buzuze izinto ezimbili ezibalulekile, buhamba buya "ekubikezeleni okusebenzayo" kwezinkinga zomgwaqo ezingenzeka.
2.1 Ukuphumelela Okukhulu 1: Ukuhlanganiswa Kwemininingwane Yesikhathi Nesikhala Sokuhlaziywa Kwamathrendi Okulimala
Izinhlelo zendabuko zihlaziya isithombe esisodwa noma iqembu lezithombe, okungabonisa kuphela isimo samanje somgwaqo. Ngokuphambene, izinhlelo zesimanje zihlanganisa idatha yesikhathi nesikhala ukuze kuhlaziywe umkhuba wokuthuthuka komonakalo womgwaqo. Ngokwesibonelo, ngokufanisa izithombe zengxenye yomgwaqo ofanayo ezithwetshwe amakhamera asebhodini ngezikhathi ezahlukene (isibonelo, njalo ngenyanga noma njalo ngekota), uhlelo lungakwazi ukubala amazinga okukhula kwezikhala (isibonelo, ukwanda ngamamitha angu-2 ngenyanga) noma izivinini zokwanda kwezimbobo emigwaqweni.
Le datha yokuhlanganiswa kwesikhathi ihlanganiswe nedatha yesikhala, efana nenani lemoto, izinhlobo zemoto (isb. amathrekhi anzima vs. izimoto zabagibeli), kanye nezimo zezulu zendawo (isb. imvula, ukushintsha kwezinga lokushisa). Imodeli yokufunda komshini ingabe ibona ukuxhumana phakathi kwalezi zinto kanye nokulimala kwemigwaqo. Isibonelo, ingxenye yomgwaqo enezimoto eziningi zamathrekhi anzima kanye nemvula evamile ingaba ne-30% yokwanda kokuphazamiseka kokwakheka kwamathafa uma kuqhathaniswa nezinye izingxenye. Lokhu kuvumela iminyango yezokuthutha ukuthi ibike ukuthi yiziphi izingxenye ezizokwazi ukuthola ukulimala ezinyangeni ezizayo ezi-3-6 futhi zithathe izinyathelo zokuvikela (isb. ukuvulela ama-crack ngaphambi kokuthi akhule) esikhundleni sokulinda ukuba ukulimala kwenzeke.
2.2 Ukuphumelela Okukhulu 2: I-Edge Computing Yokwenza Izinqumo Ngokweqiniso Lesikhathi Sangempela
Izinhlelo zokuqala zokubona ngamakhamera zazithembele ku-cloud computing ukuze kucutshungulwe izithombe—amakhamera ayelayisha izithombe ezithwetshiwe kuseva ekude ukuze kuhlaziywe, okwakubanga ukubambezeleka (ngokuvamile amahora ambalwa kuya ezinsukwini) ngenxa yemikhawulo ye-network bandwidth. Lokhu kwakwenza kube yize ukuthola izimpendulo zesikhathi sangempela, njengokuxwayisa abashayeli ngezimbobo ezingalindelekile emigwaqweni.
I-Edge computing ixazulule le nkinga ngokudlulisa ukucubungula kwedatha kusuka efwini uye emaphethelweni enethiwekhi (isibonelo, kumakhompyutha asebhodi, kumaseva endawo aseduze nezingxenye zomgwaqo). Izinhlelo zekhamera ezisebhodi ezihlome ngamamojula we-edge computing zingacubungula izithombe ngesikhathi sangempela (ngaphakathi kwamamillisecond angu-100) futhi zithumele izexwayiso ngqo kubashayeli nge-infotainment system yemoto (isibonelo, ukukhala kwezwi: "Kukhona imbobo phambili, sicela wehlise ijubane"). Ngaphezu kwalokho, i-edge computing inciphisa umthamo wedatha ethunyelwa efwini (idlulisa kuphela idatha yokulimala esele icubunguliwe esikhundleni sezithombe ezingalungisiwe), yonga i-network bandwidth futhi yenze ngcono ukuphepha kwedatha.
3. Izicelo Ezingokoqobo: Ukuguqula Ukugcinwa Kwemigwaqo Emhlabeni Wonke
Ubuchwepheshe bokubona ngekhamera buye basetshenziswa kabanzi emaphrojekthi okugcinwa kwemigwaqo emhlabeni wonke, bubonisa ukuthuthuka okukhulu ekusebenzeni kahle nasekugcineni izindleko. Ngezansi kunezifundo ezintathu ezijwayelekile zezimo:
3.1 Isimo 1: Uhlelo Lokuhlola Imigwaqo Ehlakaniphile LaseTokyo
Uhulumeni Wedolobha laseTokyo wethula uhlelo lokuhlola imigwaqo oluhlakaniphile ngo-2022, esebenzisa amakhamera afakwe ezimotweni zezokuthutha zomphakathi ezingu-500 (amabhasi namaloli) ukuqoqa izithombe zemigwaqo. Lolu hlelo lusebenzisa ama-algorithm e-YOLO kanye ne-edge computing ukuthola izimbobo kanye nemifantu ngesikhathi sangempela. Ekupheleni kuka-2023, uhlelo lwalutholile amaphuzu angaphezu kuka-12,000 omsebenzi wokulungisa umgwaqo, kuncishiswe isikhathi esidingekayo sokuhlola ngesandla ngo-70%. Ngaphezu kwalokho, ngokuhlaziya izitayela zokukhula komonakalo, uhulumeni wakwazi ukubeka phambili ukugcinwa kwezingxenye zemigwaqo ezi-30 ezingcupheni ezinkulu, kuncishiswe izingozi zezimoto ezibangelwa umonakalo womgwaqo ngo-25%.
3.2 Isimo 2: Ukuhlola Imigwaqo Emikhulu Nge-Drone E-Germany
UMnyango WezokuThutha waseJalimane usebenzisa ama-drone anamakhamera anencazelo ephezulu nobuchwepheshe bokuthwebula izithombe ezishisayo ukuhlola imigwaqo emikhulu. Ukuthwebula izithombe ezishisayo kusiza ukuthola umonakalo ofihlekile, njengezikhala zangaphakathi emgwaqweni ongabonakali ngamehlo. Amadroni angakwazi ukuhlola amakhilomitha angu-100 omgwaqo ngosuku, okushesha kahlanu kunokuhlolwa ngesandla. Ephrojekthini ka-2023 emgwaqweni omkhulu i-A7, uhlelo lwedrone luthole amaphuzu angu-45 okubhidlika okufihlekile, alungiswa ngokushesha ukuze kuvinjwe ukubhidlika komgwaqo okungenzeka. Uma kuqhathaniswa nezindlela zakudala, iphrojekthi yonga uhulumeni cishe ama-€2 million ezindlekweni zokulungisa.
3.3 Ikesi 3: Ukutholwa Okubambisanayo nezimoto ezizihambelayo e-U.S.
Izifundazwe eziningana zase-U.S., okubalwa kuzo iCalifornia neTexas, zisebenzisana nezinkampani zezimoto ezizihambelayo (AVs) ukusebenzisa amakhamera ezimoto ezizihambelayo (AVs) ukuthola umonakalo emgwaqweni. Izimoto ezizihambelayo (AVs) zihlome ngamakhamera amaningi (angaphambili, angemuva, nasemaceleni) aqopha izithombe zomgwaqo ezinemininingwane ephezulu njalo. Lolu lwazi luhanjiswa eminyangweni yezokuthutha, esebenzisa amamodeli e-AI ukuhlaziya umonakalo. Le modeli yokusebenzisana isebenzisa inani elikhulu lezimoto ezizihambelayo (AVs) emigwaqweni ukuze kufezeke ukuhlolwa komgwaqo okugcwele ngaphandle kwezindleko ezengeziwe zezimoto ezizinikezele zokuhlola. ECalifornia, lolu hlelo luye lwaphakamisa imvamisa yokuhlolwa komgwaqo kusuka kanye ezinyangeni ezintandathu kuya kanye emavikini amabili, lwenza ngcono kakhulu ukutholwa komonakalo ngesikhathi.
4. Izitayela Zekusasa: Ukwenza Imigwaqo Ihle Kakhudlwana Futhi Iphephile
Njengoba ubuchwepheshe bokubona ngamakhamera buqhubeka nokuthuthuka, buzodlala indima ebaluleke kakhulu esikhathini esizayo sezokuthutha ezihlakaniphile. Ngezansi kunezinhlobo ezine ezibalulekile okufanele uzilandelele:
4.1 Ukuhlanganiswa kwezinhlobo eziningi zezinzwa ukuze kutholwe ukunemba okuphezulu
Izinhlelo zesikhathi esizayo zokubona ngekhamera zizohlanganiswa nezinye izinzwa, njenge-LiDAR (Light Detection and Ranging) ne-radar, ukuthuthukisa ukunemba kokutholwa. I-LiDAR inganikeza ulwazi olungu-3D lokujula komgwaqo, okwenza kube lula ukukala okunemba kwejuba lemigodi nobude bama-rut. I-radar, ngakolunye uhlangothi, ingangena emvuleni, enkungwini, naseqhweni, ihambisane nokubona ngekhamera ezimeni zezulu ezinzima. Ukuhlanganiswa kwedatha yezinzwa eziningi kuzokwenza ukutholwa komonakalo womgwaqo kuthembeke kakhudlwana futhi kube namandla.
4.2 Ukuhlanganiswa nezinhlelo zedolobha ezihlakaniphile
Idatha yokutholwa komonakalo emgwaqweni izofakwa ezinhlelweni zedolobha ezihlakaniphile, ihlangane nezinye izinhlelo ezifana nokuphathwa kwezimoto, izithuthi zomphakathi, kanye nezinsizakalo eziphuthumayo. Ngokwesibonelo, uma kutholakala imbobo enkulu emgwaqweni omile, uhlelo lungazisa ngokuzenzakalelayo umnyango wokuphathwa kwezimoto ukuthi ubeke isexwayiso sezimoto, luqondise izithuthi zomphakathi ukuthi zidlule kwenye indawo, futhi luthumele amaqembu okulungisa ngesikhathi sangempela. Lokhu kuhlangana okungenamihawu kuzothuthukisa ukusebenza kahle kwezinhlelo zedolobha futhi kuthuthukise ukuhamba kwezakhamuzi.
4.3 Ukuthuthukisa Imidwebo ye-AI Amadivayisi Anemithombo Enciphile
Abacwaningi basebenza ukuze benze amamodeli e-AI asebenze kahle kumadivayisi anezinsiza ezincane, njengamakhamera anezindleko eziphansi namamojula amancane e-edge computing. Lokhu kuzonciphisa izindleko zokufaka izinhlelo zokubona ngekhamera, kuzenze zitholakalele izindlu ezincane kanye nezindawo zasemakhaya ezinemibhajethi elinganiselwe. Ngokwesibonelo, imodeli ye-YOLO elula eneziparamitha ezincishisiwe ingasebenza kumojula ye-edge computing engu-$50, ivumela izindawo zasemakhaya ukuthi zisebenzise ukutholwa okuyisisekelo kokulimala komgwaqo ngaphandle kokutshala izimali ezinkulu.
4.4 Ukugcinwa Okubikezelayo Ngamadijithali Twins
Ubuchwepheshe be-digital twin—ukudala ikhophi ebonakalayo yomgwaqo ongokoqobo—buyohlangana nombono wekhamera ukuze kufezekiswe ukugcinwa okubikezelayo okunembayo. Uhlelo luzohlala lubuyekeza i-digital twin ngedatha yomonakalo womgwaqo wangempela futhi lusebenzise izibalo zokulinganisa ukuze kubikezelwe ukuthi umonakalo uzobukeka kanjani ngaphansi kwezimo ezahlukene zomgwaqo nezomoya. Lokhu kuzovumela iminyango yezokuthutha ukuthi yakhe izinhlelo zokugcinwa eziqondene nomgwaqo ngamunye, kukhulise kakhulu impilo yengqalasizinda yomgwaqo futhi kunciphise izindleko zokugcinwa.
5. Isiphetho: Ukubona Ngamakhamera—Isisekelo Esibalulekile Sokugcinwa Komgwaqo Okuhlakaniphile
Ubuhlakani bokubona ngekhamera buye bathuthuka kakhulu kusukela ekuboniseni ukulimala okungasebenzi ukuya ekubikezeleni okusebenzayo, okuguqula ukugcinwa kwemigwaqo kusukela ekubeni yindlela yokuphendula kube yindlela yokuzilungiselela. Ngokusebenzisa amakhamera athuthukile, ama-algorithm e-AI, kanye ne-edge computing, kuvumela ukutholwa okusebenzayo, okunembayo, nokutholwa kwesikhathi sangempela kokulimala kwemigwaqo, kusiza iminyango yezokuthutha ukuthi yonge izindleko, ithuthukise ukuphepha, futhi yandise impilo yemigwaqo.
Njengoba ubuchwepheshe buqhubeka nokuthuthuka ngokuhlanganiswa kwezinzwa eziningi, ukuhlanganiswa kwamadolobha ahlakaniphile, kanye nobuchwepheshe be-digital twin, kuzoba isisekelo esibaluleke kakhulu sokugcinwa kwemigwaqo ehlakaniphile. Esikhathini esizayo, singalindela amanethiwekhi emigwaqo aphephile, athembeke kakhudlwana, futhi azinzile kakhudlwana, ngenxa yamandla ombono wekhamera. Noma ngabe ungumuntu ochwepheshe wezokuthutha, umhleli wedolobha elihlakaniphile, noma umshayeli nje osaziphethe ngokuphepha kwemigwaqo, ukuqonda ukuthi umbono wekhamera uthola kanjani ukulimala komgwaqo kubalulekile ukuze samukele ikusasa lezokuthutha ezihlakaniphile.
Uma ubheka ukusebenzisa ukutholwa kokulimala kwemigwaqo okusekelwe ekuboniseni ngekhamera esifundeni sakho, cabanga ngezinto ezifana nesimo esithile sokusetshenziswa (imigwaqo yasemadolobheni, imigwaqo emikhulu, imigwaqo yasemakhaya), izimo zemvelo, kanye nesabelomali. Ukubambisana nabahlinzeki bezobuchwepheshe abanolwazi kungakusiza ukuthi ukhethe isixazululo esenziwe ngendlela efanele esihlangabezana nezidingo zakho futhi sinikeze imiphumela efanele.