Imaketheka yomhlaba wonke ye-embedded vision camera module ifinyelele ku-4.8 billion ngo-2024 futhi kulindeleke ukuthi ikhuphuke ibe ngu-13.6 billion ngo-2033, nge-CAGR engu-12.2%. Le nkulu yokukhula ayikhulumi nje ngamakhamera amaningi—ikhuluma ngamakhamera akh smarter. Kweminyaka, amakhamera e-embedded vision abekwe emkhawulweni ngenxa yokuhweba okuyisisekelo: noma ukunciphisa ukusebenza kwesikhathi sangempela ukuze kuncishiswe ukusetshenziswa kwamandla noma ukwephula ubumfihlo ngokuthembela ekucubunguleni kwe-AI okusemkhathini. Kodwa ama-edge AI accelerators ayaphula le mikhawulo, aguqula amakhamera abe yizinhlelo ezizimele ezihlakaniphile. Ake sihlole ukuthi le teknoloji iguqula kanjani imboni ezinsizeni, ukusebenza, nezicelo zangempela. Ukuphela KweSikhathi Sokuthembela Ku-Cloud: Ukushintsha Kwepharamitha Ekucubunguleni
Amakhamera e-embedded vision ajwayelekile asebenza njengeziteshi zedatha: athola izithombe, athumele ku-cloud, futhi alinde imiphumela yokuhlola ye-AI. Le modeli idala izithiyo ezintathu ezibalulekile: isikhathi sokulinda (ngokuvamile 500ms noma ngaphezulu), izindleko zebhendi, kanye nezingozi zokuphepha. Ama-Edge AI accelerators—imishini ekhethekile noma ama-runtime ahloliwe aklanyelwe i-AI kumadivayisi—akhipha lezi zinkinga ngokuhambisa ukuhlola ngqo kukhamera.
I-Edge TPU LiteRT runtime ye-Google ibonisa le shintsho. Yakhelwe amadivayisi anama-spec aphansi (1GB RAM, i-CPU ye-dual-core), yehlisa isikhathi sokuhlola sibe ngaphansi kwe-100ms ngenkathi yehlisa ukusetshenziswa kwamandla ngo-60% uma kuqhathaniswa nezikhathi zokusebenza ezijwayelekile. Umkhiqizi ophambili wamakhamera akhanyayo wabona imiphumela emikhulu: ukushintsha ku-Edge TPU LiteRT kwehlise isikhathi sokuthola abantu sibe sikhulu ukusuka ku-550ms sibe ku-90ms, kuvumela ukulandela izinto ngesikhathi sangempela okuhambisana kahle nevidiyo ephilayo. Kubasensors bezimboni abaqapha izinga lokushisa kwemishini, i-runtime yanda isivinini sokuhlola kathathu—kusuka ku-300ms kuya ku-80ms—ihlangabezana nesidingo esiqinile sokuphuma kwe-50ms sokugcinwa kokubikezela.
Le shintsho akukhona nje kwezobuchwepheshe; kuyinto ebalulekile. Amakhamera awasancikile ezixhumaneni ze-inthanethi ezizinzile noma kumaseva akude. Manje enza izinqumo ezibalulekile endaweni, kungakhathaliseki ukuthi kuwukuthola umthengisi ophula umthetho esitolo sokuthenga noma ukubikezela ukuwa kwemishini endaweni yokukhiqiza.
Uguquko lweMishini: Kusuka Ezicini Eziphumelelayo Kuya Ku-Intelligence Ehlanganisiwe
Ama-Edge AI accelerators ashintsha ukuklama kwemishini yekhamera, edlula emodelini ejwayelekile ethi “sensor + processor + memory” iye ezakhiweni ezihlanganisiwe, ezikhethekile ku-AI. Izinto ezimbili eziphawulekayo: ukucubungula kwe-AI ngaphakathi kwesensor kanye nama-accelerators aphansi kakhulu amandla.
I-Sony IMX500 intelligent vision sensor imele ubuchwepheshe obuphakeme be-AI ngaphakathi kwesensori. Ngokuhlanganisa iphikseli chip ne-logic chip equkethe i-DSP ethile ne-SRAM, iqeda ukuthwebula, ukuhlela i-AI, nokwakha idatha ye-metadata kusensori esisodwa—akudingeki ibhokisi le-AI langaphandle. Isetshenziswa ezitolo ezingu-500 zokunethezeka e-Japan, i-IMX500 ibona ukuthi bangaki abathengi ababuka izimpawu zedijithali, isikhathi abahlala kuso, futhi ihlanganisa le datha nesimo sokuthenga—konke ngaphandle kokudlulisela izithombe ezitholakalayo. Ezinhlelweni zokuhlola ukubheka, lesi sensori sinikeza isikhathi sokuhlela esingu-0.86ms kuphela ngokusetshenziswa kwamandla kwe-0.06mJ—ukusebenza kahle kwamandla okuphindwe kabili kunezinkundla ezincintisanayo ezifana ne-Google Coral Dev Micro.
Ngaphansi kokusebenza okuphansi kakhulu, i-Himax's WiseEye 2 (WE2) processor isebenzisa i-Arm Cortex-M55 kanye ne-Ethos-U55 microNPU ukuhlinzeka ngama-50 GOPS wokusebenza kwe-AI ngenkathi idla kuphela i-1–10mW. Ngokukhethekile, ayidingi i-DRAM yangaphandle, yehlisa kokubili izindleko nokusetshenziswa kwamandla—okubalulekile kumadivayisi asebenzisa ibhethri afana nezinto zokugqoka nezinsiza ezikude. Emkhakheni wezempilo, lokhu kuvumela amakhamera amancane, angabonakali kahle ukuze kuqondiswe ukuhlinzwa asebenza amahora amaningi ngekhefu elilodwa, kanti ekuhloleni izilwane, kukhanyisa amakhamera asebenza unyaka wonke ngogesi welanga.
Lezi zinguquko kwezinsiza zenza amakhamera e-embedded vision abe ncane, athembekile, futhi aguquguqukayo. Izinsuku zamakhamera amakhulu, adla amandla amaningi, seziphelile; ikusasa liphakathi kwezinsiza ezincane, ezihlakaniphile ezihlanganiswa kahle kunoma iyiphi indawo.
Ukuphumelela Okukhulu: Amandla, Isikhathi Sokuphendula, Nokufakwa Kwenziwa Kabusha
Umthelela wangempela wezikhuthazi ze-edge AI uhleleli ekuxazululeni izinselelo ezintathu ezindala: ukungasebenzi kahle kwamandla, isikhathi sokuphendula esiphezulu, kanye nokufakwa okuyinkimbinkimbi. Ake sihlukanise ukuthi izixazululo ezihamba phambili zixazulula kanjani ngakunye:
1. Ukusebenza Kwamandla: Ukunweba Impilo Yebhethri ngama-3x noma Ngaphezulu
Amakhamera afakwe ngaphakathi asebenzisa ibhethri ngokwesiko abebebhekene nezinkinga zokucubungula i-AI, okudlula amandla ngokushesha. I-Google's Edge TPU LiteRT ibhekana nalokhu nge-"computing on-demand"—okwenza kuphela imodeli ye-AI uma ikhishwa ngemicimbi ethile (isb., ukuhamba, ukwehla kwemphumela wezinhliziyo). Umkhiqizi we-fitness tracker osebenzisa isikhathi sokusebenza ubone impilo yebhethri ikhuphuka ivela ezinsukwini eziyi-1 iye ezinsukwini eziyi-3 ngenkathi kugcinwa ukunemba okungu-95% ekuhloleni okungajwayelekile kwezinhliziyo. Kuma-camera angaphandle asebenzisa amandla elanga, i-Edge TPU LiteRT yehlise ukusetshenziswa kwamandla kusuka ku-300mW kuya ku-80mW, iqinisekisa ukusebenza ngisho nasezinsukwini ezinamafu.
2. Ukulibaziseka: Kusuka Ekubambezweni Kuya Ezenzweni Zangempela
Ezinhlelweni ezibalulekile zokuphepha—njengemoto ezizimele noma ukulawulwa kwekhwalithi kwezimboni—ukubambezeleka kungaba nomthelela phakathi kokuphumelela nokuphazamiseka. I-IMX500 ye-Sony ifinyelela ukubambezeleka kokugcina kokuphela ku-19ms kokuhlola ukubheka, kufaka phakathi ukuthwebula izithombe, processing, nokudluliswa kwedatha. Ezinhlelweni ze-ADAS zemoto, lokhu kuvumela izaziso zokuhamba emgqeni kanye nokugwema ukuhlaselwa okuphendula ngokushesha kunezimpawu zomuntu. Kwamakhamera okuhlola ezimbonini, i-Edge TPU LiteRT yehlisa isikhathi sokucabanga ukusuka ku-300ms kuya ku-80ms, ivumela ama-sensors ukuthi alandele imishini njalo emizuzwini engu-50 futhi abike ngempumelelo izinkinga ezizayo emizuzwini eyi-10 ngaphambi kwesikhathi.
3. Ukufakwa: Kusuka Ezinkingeni ze-IT Kuya Ekusethweni Okukodwa-Kucindezelwa
Ukufaka ama-model e-AI ezinkulungwaneni noma ezinkulungwaneni zamakhamera kube yinkinga yokuhlela, kudinga amaqembu e-IT ukuthi alungiselele idivayisi ngayinye ngesandla. I-Google's Edge TPU LiteRT iyenza kube lula lokhu nge-thuluzi lokufaka elibonakalayo elivumela abasebenzi abangabakhokheli ukuthi bafake ama-model kumadivayisi angu-100 ezinsukwini ezi-2 kuphela—kwehlele ezinsukwini ezi-3 ngezindlela zendabuko. I-chains yokuthengisa esebenzisa le thuluzi ifake imodeli yokuthola impahla ephumile kumakhamera angu-100 esitolo ngaphandle kokuba nomuntu oyisipesheli se-IT on-site. I-Himax's WE2 iqhubeka nokwenza ukuthuthukiswa kube lula ngokwesekela i-TensorFlow Lite Micro ne-TVM, ivumela abathuthukisi ukuthi bakhe ama-model akhethekile ngaphandle kokwazi kahle kwezinsiza eziphansi.
Uguquko lweMboni: Umthelela Wangempela Emikhakheni
Amakhamera e-embedded vision aphakanyiswe yi-Edge AI asevele ashintsha imboni, evula izimo ezintsha zokusetshenziswa ezazingenakwenzeka ngaphambili. Nansi emikhakheni emine ebonakalayo esebenzisa ushintsho olukhulu:
Ukukhiqiza: Ukugcinwa Okubikezelayo Nokulawulwa Kwekhwalithi
Ezindaweni zokukhiqiza ezihlakaniphile, amakhamera anama-Edge TPU LiteRT kanye ne-Himax WE2 alandelela imigqa yokukhiqiza ngesikhathi sangempela, ethola amaphutha ngokuqinisekile okungu-99% futhi ibikezela ukuwa kwemishini ngaphambi kokuba kwenzeke. Lokhu kwehlisa isikhathi sokungasebenzi ngama-30% futhi kwehlisa izindleko zokulawula ikhwalithi ngokususa amaphutha abantu.
Ukuthengisa: Iziqubulo Ezinokwakheka Nokusebenza Okuphumelelayo
I-IMX500 yeSony iyashintsha imidiya yokuthengisa ngokukala ukusebenza kokukhangisa ngaphandle kokuphula ubumfihlo bekhasimende. Amakhamera alandelela ukuthi bangaki abathengi abahlanganyela nezikhangiso zedijithali, futhi le datha ihlanganiswa nokuziphatha kokuthenga ukuze kuthuthukiswe okuqukethwe. Ngasikhathi sinye, amamodeli okuthola ukungabi khona kwezimpahla athunyelwe nge-Edge TPU LiteRT aqinisekisa ukuthi izitolo zihlala zigcwele, kukhuphula ukuthengiswa ngama-15%.
Ezempilo: Ukuhlolwa Okuncane Nokubhekwa Kwabagulayo
Ama-accelerators aphansi kakhulu afana ne-Himax WE2 anika amandla amakhamera amancane, agqokekayo aqapha abaguli 24/7, athola izimpawu zokuqala zokwehla kwesimo futhi abike abelaphi. Ekuhlinzeni, amakhamera e-vision afakwe ngaphakathi anobuhlakani bokufaka izithombe anikeza ukuhamba kwesikhathi okwenziwa ngesikhathi sangempela, kunciphisa isikhathi sokusebenza ngama-20% futhi kuthuthukisa imiphumela.
Izimoto: I-ADAS ephephile kanye Nokushayela Okuzimele
Amakhamera e-vision afakwe ngaphakathi ayizinyembezi zezimoto ezizimele, futhi ama-accelerators e-edge AI awenza abe nethembekile kakhulu. Ngokuhamba kwesikhathi okungaphansi kwama-20ms nokusetshenziswa kwamandla okungaphansi kwama-10mW, lawa makhamera avumela izici ezifana nokugcina umgwaqo, ukutholwa kwabantu, nokuhlola umshayeli okuhambisana nemithetho eqinile yokuphepha.
Izinselelo kanye noMgwaqo Olandelayo
Naphezu kwalokhu kuthuthuka, izinselelo zihlala zikhona. Ukuhlela imodeli yezinsiza ezincane kudinga ibhalansi phakathi kokunembile nokukhulu—ukuhlanganiswa (ukuguqula imodeli ye-32-bit ibe yi-8-bit) kusiza, kodwa kunganciphisa ukunemba ngokufika ku-5%. Ukuhlukaniswa kwezinsiza kuyinkinga enye: ngokuba nezakhiwo eziningi (ARM, x86) kanye nezisheshisi emakethe, abathuthukisi badinga amathuluzi aguquguqukayo ukuqinisekisa ukuhambisana.
Bheka phambili, izitayela ezintathu zizochaza isizukulwane esilandelayo samakhamera e-embedded vision:
1. Ukuhlanganiswa Kwe-Multi-Modal: Amakhamera azohlanganisa idatha yokubona ne-audio, izinga lokushisa, nezinsiza zokunyakaza, ezivunyelwe ngama-accelerators e-AI aphakeme kakhulu.
2. Ukufunda Kwe-Edge: Amakhamera azophinde angasebenzisi kuphela imodeli ezifundiswe ngaphambili kodwa azofunda kudatha yasendaweni, alungiselele ezindaweni ezithile ngaphandle kokuvuselelwa kwefu.
3. Ukwanda Kwe-Miniaturization: Izikhuthazi ezifana ne-IMX500 zizoba zincane kakhulu, zivumele ukuhlanganiswa kumadivayisi afana nezibuko ezihlakaniphile nezizinda ze-IoT ezincane.
Isiphetho: Yamukela Uguquko Lwe-Vision Esebenzayo
Izikhuthazi ze-edge AI azithuthukisi kuphela amakhamera e-vision afakwe—zishintsha lokho lezi zinsiza ezingakwenza. Kusukela ekuqoqeni izithombe okungasebenzi kuze kube yizinhlelo ezisebenzayo, ezihlakaniphile ezithatha izinqumo ngesikhathi sangempela, amakhamera aba yisisekelo se-inthanethi yezinto zezimboni, amadolobha ahlakaniphile, kanye nobuchwepheshe obuqondile.
Kwibhizinisi, umyalezo ucacile: ukwamukela amakhamera e-vision akhuthazwa yi-edge AI akusona isinzuzo sokuncintisana—kuyadingeka. Njengoba imakethe yomhlaba ilindeleke ukuba ikhule kabili ngo-2033, abaqalayo bazothola ingxenye yemakethe ngokuvula izimo ezintsha zokusetshenziswa, kwehlisa izindleko, futhi bahlinzeke ngempumelelo engcono yomsebenzisi.
Njengoba imishini iba nezinhlaka ezihlanganisiwe, isoftware iba lula ukuyisebenzisa, futhi imodeli iba nekhono, amathuba awapheli. Ikusasa le-vision efakwe akukhona nje ukubona—kukhona ukuqonda, ukwenza, nokuzivumelanisa. Futhi leli kusasa likhona namuhla, likhuthazwa ngama-edge AI accelerators.