Ukutholwa Kwezinto Okusekelwe ku-AI Ngezinsiza Zekhamera: Umngcele Olandelayo Wokuhlola Okuhlakaniphile

Kwadalwa ngo 2025.12.06
Imaketheka ye-AI yekhamera yomhlaba ibona ukukhula okukhulu, ngokubikezela okukhomba ku-$35.5 billion ngonyaka ka-2034 nge-CAGR ka-14.1%. Ngemuva kwalokhu kukhula kukhona ushintsho oluguqulayo: amamojula ekhamera awasasebenzi kuphela njengamadivayisi okuthwebula izithombe kodwa asebenza njengezikhungo zokuhlola ezihlakaniphile, ezixhasiwe ngokuthuthukisiwe kokutholwa kwezinto nge-AI. Ngokwehlukile kuzinhlelo ezijwayelekile ezithembele ekucubunguleni kwefu nasekudateni okukhulu okwenziwe ngamalebula, i-AI yesimanje eqhutshwa yi-amamojula ekhamerasebenzisa i-edge computing, ukwakheka okuphansi kwamandla, kanye nezinhlelo ezintsha ukuze uthumele ukutholwa kwesikhathi sangempela, okunembile—ngisho nasezindaweni ezinamandla alinganiselwe. Le ndatshana ihlola ukuthuthuka okukhulu, izicelo ezisebenzayo, kanye nezindlela zokufaka ezakha le ndawo eshintshashintshayo.

I-Dual Revolution: Ukuvuselelwa Kwezinsiza Zokusebenza Kuhlangana Nezithuthukisi ze-AI

Ukusebenza kahle kokutholwa kwezinto nge-AI kumamojula amakhamera kuncike ezintweni ezimbili ezihlobene: imishini ekhethekile eyenzelwe ukufakwa emaphethelweni kanye nezinhlelo zokuthola ezizayo.

Ukuguqulwa Kwezinsiza: Kusukela Kuma-Sensors Wokuthwebula Izithombe Kuya Kwamaphuzu Ahlakaniphile

Izinsiza zendabuko zezikhamuzi zihluleka ngokusetshenziswa kwamandla, isikhathi sokulinda, kanye nokuphindaphinda kwedatha—izithiyo ezibalulekile zokusebenza kwe-AI ye-edge. Ukuqhamuka kwamuva kusebenze kulezi zinkinga:
• Izinsiza Zokubona Ezisekelwe Emicimbini: Amadivayisi afana ne-Realsense AI’s ALPIX-Maloja® aguqula ukusebenza kahle ngokusetshenziswa kwamandla okungu-1000fps, ububanzi obuphakeme be-120dB, kanye ne-resolution engu-256×256. Ngokwehlukana nezinsiza ezisekelwe kumafreyimu, athumela kuphela idatha ehambisana nokunyakaza (10-20% yesisindo sedatha esejwayelekile), okwenza kube nokusebenza okuhlala kuvuliwe (AON) kumakhompyutha aphansi njenge-ESP32S3 noma i-STM32N6. Ukuvikelwa kwabo kwemfihlo okujwayelekile—ukungabi khona kokuthwebula okungemuva noma imininingwane—kwenza kube kuhle ezindaweni ezibucayi.
• Izikhungo ze-AI SOC Ehlanganisiwe: Izixazululo ezincane ezifana ne-IADIY’s Aiye Cam-Talpa (4mm×6mm) zihlanganisa ama-CMOS sensors, ama-MCUs, kanye nemodeli ze-AI ezifundiswe ngaphambili zibe yichip eyodwa. Zisebenza ku-96MHz nge-288KB ye-SRAM esebhodi, lezi zikhungo zisekela ukutholwa kobuso, ukuqashelwa kwezimpawu, nokulandela ukuhamba ngaphandle kwezicubunguli zangaphandle, kunciphisa ubunzima bokuhlanganisa nezindleko zokukhiqiza.
• I-Edge Processors Eziphansi Kwamandla: I-Renesas’ RZ/V2L MPU iphakamisa ama-module we-AI camera nge-DRP-AI technology, ihlinzeka ngokuqonda kahle ngaphandle kwezidingo zokukhishwa kokushisa. Lokhu kuvumela ukuklama okuncane kwezindlu ezihlakaniphile, imishini yezimboni, kanye nezinsiza zokulima, zonke zisebenza ngamandla amancane.

I-algorithm ye-AI: Ngaphezu kokufunda okujulile kwendabuko

Ngenkathi amamodeli afana ne-YOLOv12 ne-Faster R-CNN ephatha izimo eziphezulu zokusebenza, isizukulwane esilandelayo sokutholwa kwezinto sichazwa ngokuguquguquka nokufinyeleleka:
• Agentic-Object-Detection: Ukukhishwa kwe-Landing.ai ngo-2025 kulethe indlela ye-zero-shot ekhupha isidingo sedatha efakwe amalebula. Ngokuhlanganisa imodeli yolimi lwezithombe nezizathu ezisekelwe kumalungu, ihumusha izikhumbuzo zolimi lwemvelo (isb. “thola ama-strawberry angakakhuli” noma “abasebenzi abangekho neziqinisekiso”) futhi ifinyelela ku-79.7% F1 accuracy—iphumelela i-Florence-2 ne-OWLv2. Lokhu kushintsha amamojula wekhamera ukusuka kumadivayisi anomsebenzi ophakanyisiwe kuya kumasensori angaguquguquki.
• Ukuthuthukiswa Kwezimodeli Ezilula: Izakhiwo ezifana ne-TensorFlow Lite Micro kanye ne-Edge Impulse zenza kube nokwenzeka ukufaka izimodeli ezincishisiwe kumamojuli anemithombo elinganiselwe. Isibonelo, i-Aiye Cam-Talpa isekela izimodeli ezilungiselelwe ngaphambili zokuthola isimo somzimba nokulandela abantu kum sensor ye-grayscale engu-320×320, ibalancinga ukunembeka nokusebenza kahle kokubala.

Izinhlelo Eziphakathi: Ukuguqula Imboni Nge-Intelligent Detection

Amamojula wekhamera asekelwe kwi-AI avula ubuchwepheshe ezindaweni ezahlukene, edlula ezinhlelweni zokuphepha ezijwayelekile ukuze anikeze inani elibonakalayo:

1. Ukuhlola Okunobuchwepheshe & Impilo Enhle

• Ukuhlola Okungathinti: Amamojula wekhamera asekelwe emicimbini avumela ukutholwa kokwehla nokulandela isimo sokuma ezikhungweni zokunakekelwa kwabantu abadala, adla <4mW ngenkathi egcina ukusebenza 24/7. Ukuklama kwabo okugxile ekuphepheni (akukho ukutholwa kwemibono yobuso) kubhekana nezinkinga zokuhambisana ezindaweni zokunakekelwa kwezempilo.
• Ukusekela Ukuvuselela: Ama-moduli e-AI ahlakaniphile ahlanganiswe nezinsiza zokwelapha alandelela ukuhamba kwabagulayo, anikeza impendulo yesikhathi sangempela kubelaphi. Ama-moduli ase-RZ/V2L avela ku-Renesas anikeza ukutholwa kwe-pose okuphansi, kuthuthukisa ukusebenza kahle kokwelashwa komzimba.

2. Ikhaya Elihlakaniphile & Izinto Zokusetshenziswa Kwabathengi

• Izinsiza Eziqaphelayo: Amamojula wekhamera ye-AI kumatshana, emakhazeni, nasezibhedlela ezihlakaniphile athola ubukhona bomuntu, izenzo, futhi ngisho nezikhundla zokulala. Isibonelo, umfanekiso ohlakaniphile ophakanyiswe ngesikhumbuzo se-ALPIX-Maloja ungakwazi ukulungisa ukuhamba komoya ngokuya ngesikhundla somsebenzisi ngaphandle kokuphindaphinda ukuhamba kwekhamera.
• Izinsiza Eziphumelelayo: Imidlalo yokufunda nezikhangiso zokudlala zisebenzisa i-IADIY’s Aiye Cam-Talpa ukuze ziqaphe ubuso nokuhlonza izenzo, okuvumela ukudlala okuqondile ngaphandle kwezinsiza eziyinkimbinkimbi. Imodeli ezifundiswe ngaphambili zinciphisa isikhathi sokuthuthukiswa, zivumela abakhiqizi ukuthi baphumeze imikhiqizo emakethe ngokushesha.

3. Ukuzenzakalela Kwezimboni & Amadolobha Ahlakaniphile

• Ukugcinwa Okubikezelayo: Ama-module wekhompyutha ye-Edge AI abheka imigqa yokukhiqiza ukuze athole izinkinga zempahla, ngama-agentic models athola “amabhola aphukile” noma “ukuvuza kwemifantu” ngezimemo zembhalo—akudingeki ukuqeqeshwa okukhethekile. Izixazululo zokubala ze-Meishi Technology zifeze ukukhula okungu-373% ngonyaka emalini ye-AI, zisebenza ezinhlelweni zedolobha ezihlakaniphile ezifana nokubala kwabagibeli ezikhumulweni zezindiza nokuthola ukujikeleza.
• Ukuhlola Okokuqala Ngobumfihlo: Izindawo zisebenzisa izinzwa ezisekelwe emicimbini ukuze zihlola izixuku, njengoba zidlulisa kuphela idatha yokunyakaza, zigwema ukuhlinzeka ngemininingwane yobumfihlo ehambisana ne-CCTV yendabuko. Ngonyaka ka-2025, kuzobe sekuhlotshiswe ama-khamera e-AI angama-3.5 billion emadolobheni akhanyayo emhlabeni jikelele, kanti u-65% uzoba nama-chips e-AI akhanyayo.

4. Ukulima Okunembile

• Ukubheka Impilo Yezitshalo: Ama-drones anemamojula we-AI kamera aphansi anquma ukuhlaselwa yizilokazane kanye nokuntuleka kwezithako. Ukutholwa kwezinto ezisebenzayo kuhlukanisa “amakhasi anempilo” kusuka “ezinhlobonhlobo ezibulalayo” kusetshenziswa imiyalezo yolimi lwemvelo, kunciphisa isidingo sokuqeqeshwa kwabafuyi.
• Ukulandela Izinkomo: Amamojula amancane axhunywe ezakhiweni zezimvu athola ukuhamba kwezilwane nokuziphatha okungajwayelekile, ebika abalimi ngezinkinga zempilo ezingaba khona. Ukusebenza kahle kwe-Aiye Cam-Talpa kwenza kube nokwenzeka ukusabalalisa ngobuningi emisebenzini yezolimo.

Ukweqa Izinselelo Zokufaka Izenzo

Ngenkathi ubuchwepheshe buhamba phambili ngokushesha, izinhlangano zibhekana nezithiyo ezibalulekile uma zifaka amamojula amakhamera anokwenziwa kwe-AI:

1. Ukulinganisa Ukusebenza Nezimo Zokuphathwa Kwezinsiza

Amadivayisi e-Edge asebenza ngamandla okucubungula anqunyelwe kanye nokuhlinzekwa kwamandla. Izixazululo zifaka phakathi:
• Ukuklama Imodeli Eziqaphelayo: Ukuhlela ama-model e-AI ukuze ahambisane ne-SOCs ethile (isb., i-DRP-AI accelerator ye-RZ/V2L) kunciphisa isikhathi sokuhlola ngama-30-50%.
• Ukucubungula Okuxubile: Ukudlulisa imisebenzi eyinkimbinkimbi (isb., ukuqeqeshwa kwemodeli) efwini ngenkathi kugcinwa ukutholwa kwesikhathi sangempela emaphethelweni. Izinsiza ezisekelwe emicimbini zinciphisa ukudluliswa kwedatha ngokuthumela kuphela idatha yokunyakaza efanele.

2. Ukuqinisekisa Ubumfihlo Nokuhambisana

Izimiso eziqinile ezifana ne-GDPR zidinga ukuphathwa kwedatha ngokuziphatha.
• I-Hardware ye-Privacy-by-Design: Izinsiza ezisekelwe emcimbini zivikela ubumfihlo ngokugwema ukuthwebula izithombe ezimile.
• Ukucubungula Kwedivayisi: I-Edge AI ikhipha ukudluliswa kwedatha kuya efwini, yehlisa ubungozi bokub expose. Izixazululo ze-Meishi Technology ze-edge zihambisana nezidingo zokuhlala kwedatha, okuyisici esibalulekile ekwamukeleni kwazo kumaphrojekthi edolobha elihlakaniphile.

3. Ukunciphisa Ubunzima Bokufaka

• Izikhala Ezihlanganisiwe: Izixazululo eziphelele ezifana nezikhala ze-AI ze-Renesas zifaka imisebenzi ye-ISP (ukukhanya okuzenzakalelayo, ibhalansi emhlophe) kanye nezimodeli ezilandiwe ngaphambi kokufakwa, kulula ukuhlanganisa.
• Izinsiza Zokusebenzisa Kalula: Amathuluzi afana ne-Edge Impulse avumela abangewona ochwepheshe ukuba baqeqeshe futhi baphumeze imodeli kumamojula anamandla aphansi, okwenza ukufinyelela ekutholeni izinto ze-AI kube lula kubo bonke.

Umgwaqo Olandelayo: Iziqondiso Zesikhathi Esizayo

Ukuhlangana kwe-AI nemamojula yekhamera kuzophinde kuthuthuke ngezindlela ezintathu ezibalulekile:
1. Multi-Modal Sensing: Ukuhlanganisa idatha yokubona ne-audio, izinga lokushisa, nezinsiza zokunyakaza ukuze kutholakale okunembile kakhulu. Isibonelo, imodyuli yasekhaya ehlakaniphile ingathola “ingane ikhala eduze kwesitebhisi” ngokuhlanganisa izinkomba ze-audio nezokubona.
2. Izinhlelo Zokuzifundela: Imodyuli ezizayo zizovumelanisa nezimo ezintsha ngaphandle kokuphinda ziqeqeshelwe, zisebenzisa ama-workflows e-Agentic ukuze ziqinise ukutholwa ngokusekelwe emibikweni yomsebenzisi.
3. Ukunciphisa Usayizi Nokwehlisa Izindleko: Njengoba kuboniswe nge-4mm×6mm Aiye Cam-Talpa, ama-moduli amancane, aphansi kwezindleko azovumela ukuhlanganiswa kumadivayisi angakaze asetshenziswe—kusukela kumadivayisi agqokwayo kuya kumasensori ezimboni.

Isiphetho

Ukutholwa kwezinto okwenziwa ngama-AI ngezikhamuzi kukhombisa ushintsho olukhulu endleleni esihlangana ngayo nobuchwepheshe. Ngokuhlanganisa izinguquko eziphansi zamandla (izinzwa ezisekelwe emicimbini, ama-SOCs ahlanganisiwe) nama-algorithms e-AI aguquguqukayo (imodeli ze-Agentic, ama-frameworks alula), lezi zikhulumi ziguqula imikhakha kusukela kwezempilo kuya kwezolimo. Ukhiye wokuphumelela uhlelwe ekulinganiseni ukusebenza kwezobuchwepheshe nezinto ezibalulekile ezifana nokuvikeleka, izindleko, kanye nokulula kokufaka.
Njengoba imakethe yomhlaba ikhuliswa ibe ngu-$35.5 billion ngonyaka ka-2034, izinhlangano ezamukela le teknoloji zizothola inzuzo yokuncintisana—zihlinzeka ngezixazululo ezihlakaniphile, ezisebenza kahle, nezihlonipha ubumfihlo. Nokho, uma wakhe idivayisi yasekhaya ehlakaniphile, uhlelo lokubheka ezimbonini, noma ithuluzi lezolimo, ikusasa lokutholwa kwezinto alikho efwini—likwi-edge, lisebenza ngama-modules akhamera ahlakaniphile. Ulungele ukufaka ukutholwa kwezinto kwe-AI kwi-module yakho yekhamera? Hlola ukukhethwa kwethu okuhlelwe kahle kwezixazululo eziphansi amandla, eziphezulu ukusebenza ezihlelwe ngezidingo zemboni yakho.
ukutholwa kwezinto nge-AI
Uxhumane
Sicela uxhumane nathi uhambele

Mayelana nathi

Usizo

+8618520876676

+8613603070842

Izindaba

leo@aiusbcam.com

vicky@aiusbcam.com

WhatsApp
WeChat