Cabanga ngedivayisi yokushaya ucingo enobuhlakani evumela ukuthi ikhombe amalungu omndeni wakho ngokushesha futhi ikwazise kuphela ngezivakashi—akukho ukulibaziseka, akukho waiting for data ukuze ithumele kumaseva akude. Noma i-robot yasefekthri ethola iphutha elincane emkhiqizweni phakathi kokuhlanganiswa, imisa ukukhiqizwa ngemizuzwana ukuze igweme ukulahleka. Lezi zimo azikona izinganekwane zesayensi—zenziwa zaba ngempela ngama-modules kamakhamera anokucubungula kwe-AI okukhona.
Ngeminyaka, ubuchwepheshe bezithombe nobuhlakani bokwenziwa kube neqhaza elihlangene, kodwa iningi lemidlalelo yokuqalaAmakhamera anamandla e-AIkuncike ekucubunguleni okusemkhathini: ukuthwebula izithombe, ukuthumela ku-server ekude ukuze kuhlaziywe, nokulinda impendulo. Namuhla, le ndlela iyashintsha. Njengoba i-AI iba encane futhi imishini iba namandla, ama-module wekhamera aqhubeka efaka amandla e-AI ngqo kudivayisi uqobo. Kodwa yini "i-AI esebenzisa" empeleni kusho kuma-module wekhamera? Baphumelela kanjani? Futhi kungani le shintsho ibalulekile ezimbonini ezivela kwezobuchwepheshe bezokuthenga kuya kwezempilo nasekukhiqizeni? Kulesi sihloko, sizokhuluma ngempela ngama-AI akwi-board kumamojula wekhamera: izisekelo zayo zobuchwepheshe, izinzuzo ezibalulekile uma kuqhathaniswa nokucubungula okusemkhathini, izicelo zangempela, kanye nekusasa le teknoloji esheshayo. Noma ungumthandi wezobuchwepheshe, umholi webhizinisi ophenya ngezinsiza ezihlakaniphile, noma umthuthukisi ophonsa phambili imikhiqizo esebenzisa amakhamera, le mhlahlandlela izophendula imibuzo yakho ephuthumayo.
Iyini i-On-Board AI yeziMojuli zeKhamera?
Okokuqala, ake sichaze amagama. I-AI esebenzisa imishini (noma i-AI esebenzisa idivayisi) ibhekisela kumathuluzi e-artificial intelligence asebenza ngqo kumishini ye-camera, hhayi ukuncika kumaseva angaphandle (cloud) noma kudivayisi exhunywe (njengomakhalekhukhwini noma ikhompyutha). Lokhu kusho ukuthi ikhamera ayiboni kuphela—iyahlaziya, ihlaziye, futhi isebenzise idatha yokubona ngesikhathi sangempela, lapho isithombe sithathwa khona.
Ukuze siqonde ukuthi kungani lokhu kubalulekile, ake siqhathanise nokucubungula kwe-AI okusemkhathini:
| Aspect | On-Board AI Camera Modules | Amamojula eKhamera e-AI Esisekelwe eMoyeni |
| Indawo Yokucubungula Idatha | Ngokwakhiwa kwekhamera | Izinsiza ezikude |
| Ukubambezeleka | Iminithi (eduze kwesikhathi) | Amasekhondi (kuncike kwi-inthanethi) |
| Ubumfihlo & Ukuvikeleka | Idatha ayishiyi idivayisi | Idatha ethunyelwa phezu kwamanethiwekhi |
| Izidingo zeBandwidth | Okuncane (akukho ukulayishwa kwedatha) | High (needs constant connectivity) |
| Ukuthembeka | Isebenza ngaphandle kwe-inthanethi | Kuxhomeke ekuxhumaneni kwe-inthanethi |
Ngokuyinhloko, i-AI efakwe ngaphakathi iguqula amamojula wekhamera ukusuka "kokuhlanganisa idatha" ibe "abathathi bezinqumo abahlakaniphile." Esikhundleni sokuthwebula ama-pixels kuphela, angakwazi ukuhlonza izinto, ukuthola izimo zokunyakaza, ukuqaphela ubuso, noma ngisho nokuhumusha izenzo—konke lokhu ngaphandle kokwesekwa kwangaphandle.
Kodwa izimoduli zekhamera, ezivame ukuba zincane futhi zibe nezidingo zamandla, zisebenza kanjani ekwenzeni umsebenzi onzima we-AI? Impendulo itholakala emkhathini ophelele wokwakhiwa kwezinsiza, ukwenziwa kahle kwemodeli ye-AI, nokuhlanganiswa kwesofthiwe.
Iziphi Izindlela Eziphumelelayo Zokuthi Amamojula Ekhompyutha Avumele AI Ekhanda?
Amamojula ekhamera awasiyona nje ama-lenses nama-sensors kuphela—sewaba yizinhlelo zokusebenza ezincane ezihlelwe ukuze zisebenze nge-AI. Izinto ezintathu ezibalulekile zisebenza ndawonye ukuze zenze i-AI esebenzayo:
1. Izinsiza ze-AI ezikhethekile: I-“Brain” yeModule
Amamojula emifanekiso wendabuko athembele kumaphrosesa wezimpawu zomfanekiso (ISPs) ukuze abhekane nemisebenzi eyisisekelo efana nokulungisa ukukhanya noma ibhalansi yemibala. Kubuchwepheshe be-AI, abakhiqizi bafaka ama-accelerator e-AI aqondile—ama-chips amancane, aphumelelayo ekudleni amandla akhelwe ngokukhethekile ukuze aqhube ama-algorithms e-AI ngokushesha.
Izibonelo ezivamile zifaka:
• Izikhungo Zokucubungula Izinzwa (NPUs): Zitholakala kumamojula avela ezinkampanini ezifana neQualcomm, iMediaTek, neHuawei, ama-NPU akhombisa ukusebenza kahle ekugijimeni amamodeli okufunda okujulile (isizinda se-AI yanamuhla).
• I- Tensor Processing Units (TPUs): Izisheshisi ezenziwe ngokwezifiso ze-Google, ezisetshenziswa kumamojuli we-Coral camera, zisebenza kahle ku-TensorFlow (i-AI framework ethandwa kakhulu emhlabeni).
• Ama-Microcontroller (MCUs) anama-Extension e-AI: Amachips aphansi amandla afana ne-Cortex-M series ye-Arm, afaka izici ze-AI ezakhelwe ngaphakathi zamakhamera amancane, asebenzisa ibhethri (isb., izinzwa zokuphepha noma izinto ezigqokwayo).
Lezi zisheshisi zibalulekile ngoba imodeli ye-AI—ikakhulukazi amanethiwekhi ajulile—idinga ukucubungula okukhulu kokuphindaphindiwe (ukucubungula imisebenzi eminingi ngasikhathi sinye). Ngokwehlukana nama-CPU ajwayelekile, izisheshisi ze-AI zakhelwe ukuphatha le msebenzi kahle, ngaphandle kokukhathaza amabhethri noma ukushisa (okubalulekile kumamojula wesithombe amancane).
2. Ama-Modeli e-AI Ahlelekile: Anamandla Asezingeni Elincane Lokusetshenziswa Emkhathini
Amamodeli e-AI aphelele (afana nalawo asetshenziswa ezimotweni ezizimele noma ezikhungweni zedatha) akhulu kakhulu futhi anesivinini esiphansi sokusebenza kumamojula wekhamera. Esikhundleni salokho, abathuthukisi basebenzisa amasu okwenza amamodeli abe mncane ukuze banciphise amamodeli e-AI ngaphandle kokulahlekelwa ukusebenza:
• Ukukhishwa: Kwehlisa ukunemba kokubala kwemodeli (isb., kusuka kumaphuzu aphumayo angu-32-bit kuya kumaphuzu angu-8-bit). Lokhu kwehlisa usayizi wemodeli ngama-75% futhi kusheshisa ukucubungula, ngaphandle kokuthinta kakhulu ukunembeka.
• Ukuphuma: Kususa izingxenye "eziphindaphindiwe" zomodeli (isb., ama-neurons angasetshenziswanga enetwork ye-neural) ukuze yenze kube lula.
• Ukucindezela Ulwazi: Qeqesha imodeli encane "yomfundi" ukuze ikopishe ukuziphatha kwemodeli enkulu "yothisha", igcine ukunemba ngenkathi yehlisa ubunzima.
Izinsiza ezifana ne-TensorFlow Lite, i-PyTorch Mobile, kanye ne-ONNX Runtime zenza le ndlela yokwenza kube lula, zivumela abathuthukisi ukuthi bafake ama-model e-AI nakuma-module amancane kakhulu wemakhamera. Isibonelo, imodeli yokuhlonza ubuso engase ithathe ama-gigabytes wesitoreji ngendlela yayo ephelele ingacindezelwa ibe ngamamegabytes ambalwa—ancane ngokwanele ukuze afaneleke kumemori eyakhelwe ngaphakathi ye-module yekhamera.
3. Ukuhlanganiswa kwe-Sensor-AI: Kusuka kuma-Pixels kuya ku-Insights
Amamojula emakhamera anamuhla ahlanganisa izinzwa zezithombe ezisezingeni eliphezulu nama-accelerators e-AI emsebenzini ophumelelayo.
1. Umshini wokuhlola uthola idatha ebonakalayo eluhlaza (ama-pixels).
2. I-ISP icubungula isithombe (ilungisa ukukhanya, yehlisa umsindo, njll.).
3. I-AI accelerator igijima imodeli ethuthukisiwe kumfanekiso ophathwe.
4. Imodyuli ikhipha “isinqumo” (isb., “ubuso bukhonjisiwe,” “ukuphambuka kutholakele”) noma iqala isenzo (isb., ukuthumela isixwayiso, ukumisa umshini).
Le nhlanganisela ibalulekile ekusheshiseni kwe-AI ethwele: idatha ayishiyi imodyuli, ngakho akukho kuhlangabezana nesikhathi sokudluliswa kwenethiwekhi. Isibonelo, ikhamera yokuphepha enezici ze-AI ethwele ingakwazi ukuthola ukungena nokuthumela isexwayiso ngaphansi kwemizuzwana eyi-100—kuqhathaniswa nemizuzwana eyi-1-2 yekhamera esekelwe efwini (uma kucatshangwa uxhumano lwe-inthanethi olusheshayo).
Kungani i-On-Board AI ibaluleke kakhulu kune-Cloud-Based Processing
Ukushintsha ku-AI ethwele akusikho kuphela ukuphuculwa kwezobuchwepheshe—kuqeda izinkinga ezibalulekile ezingaxazululwa yimamojula yekhamera esekelwe efwini. Nansi imikhawulo emine enkulu:
1. Ukusebenza Kwesikhathi Sangempela: Akukho Ukulibaziseka Emisebenzini Ebalulekile Ngaleso Sikhathi
Ezinhlelweni lapho yonke imizuzwana ibalulekile, i-AI ethuthukisiwe ayinakho ukuxoxisana. Cabanga:
• Izimoto Ezizimele: Imojula yekhamera emotweni ezizimele kumele ibone abantu abahamba ngezinyawo, abakhweli bamabhayisikili, noma izithiyo eziphuthumayo ngaphansi kwemizuzwana engama-50 ukuze kugwenywe ukuhlangana. Ukucubungula okusemkhathini (nangezinga lokulibala elingu-1 sekondi) kuzoba yingozi.
• Ukulawulwa Kwekhwalithi Yezimboni: Ikhamera yefektri ebheka imikhiqizo engu-1,000 ngomzuzu idinga ukuthola amaphutha ngokushesha ukuze ivimbele izinto ezingalungile ekufikeni kumakhasimende.
• Augmented Reality (AR): Amagilasi e-AR asebenzisa imodyuli yekhamera ukufaka ulwazi lwezidijithali emhlabeni wangempela—ukubambezeleka kuzophula isipiliyoni somsebenzisi.
I-AI esebhodini iletha izikhathi zokuphendula eziseduze nezikhathi eziphuthumayo lezi zidingo, okwenza kube ushintsho emikhakheni lapho isivinini sisho ukuphepha, ukusebenza kahle, noma ukwaneliseka komsebenzisi.
2. Ubumfihlo & Ukuvikeleka: Idatha Ayishiyi Idivayisi
Esikhathini sokwanda kokwephulwa kwedatha nemithetho yokuvikela ubumfihlo (GDPR, CCPA), i-AI ethuthukisiwe ikhipha ingozi yokuthi idatha ebonakalayo ebucayi ithathwe noma isetshenziswe kabi ngesikhathi sokuhamba. Isibonelo:
• Ikhamera yokuphepha yasekhaya enobuhlakani obuphakathi ayithumeli izithombe zomndeni wakho efwini—kuphela isixwayiso (“umuntu ongaziwa emnyango”) esithunyelwa.
• Ikhamera yezempilo esetshenziselwa ukuqapha abaguli abakude igcina izithombe zezokwelapha kudivayisi, ihambisana nemithetho eqinile ye-HIPAA.
• Ikhamera yendawo yokusebenza yokuphepha kwabasebenzi ayigcini noma idlulisele izithombe zabasebenzi—ithola kuphela izingozi zokuphepha (isb. imishini engavikelekile).
Le ndlela yokuthi "ubumfihlo ngokwakhiwa" iyindawo enkulu yokuthengisa kubathengi kanye namabhizinisi, njengoba ibuyisela ukulawulwa kwedatha ezandleni zomsebenzisi.
3. Ukuncishiswa Kwe-Bandwidth & Izindleko
Amamojula wekhamera asefuqulweni adinga ukuxhumeka okuqhubekayo kwi-intanethi ukuze athumele idatha kumaseva—okungumsebenzi obiza kakhulu kumabhizinisi anamakhamera ayikhulu noma ayizinkulungwane (isb., imikhakha yokuthengisa, izitolo zokugcina impahla). I-AI esebenzisa ibhodi ye-akhawunti inciphisa ukusetshenziswa kwe-bandwidth ngaphezu kwama-90%: esikhundleni sokulayisha wonke umfanekiso, ikhamera ithumela kuphela imininingwane esebenzayo (isb., “amakhasimende ayi-10 emgqeni wesithathu,” “ukuvuza kutholakele”).
Isibonelo, isitolo sokuthengisa esinamakhamera angu-50 asekelwe efwini singasebenzisa ama-TB angu-100 wedatha ngenyanga, okuthatha izinkulungwane ezikhokhelwayo ezindlekweni ze-inthanethi. Nge-AI efakwe, lokho kusebenzisa kwehla kube ama-TB angu-10—konga imali nokunciphisa umthwalo kwi-infrastructure yenethiwekhi.
4. Ukuthembeka Okungaxhunyiwe
Amakhamera asefu ayasebenzi ngaphandle kokuxhumeka ku-inthanethi. Imodyuli yekhamera ye-AI esebenzisa ibhodi iyasebenza noma kuphi—ngisho nasezindaweni ezikude ezinganxenxi. Lokhu kubalulekile ku:
• Amakhamera okuphepha angaphandle ezindaweni zasemaphandleni.
• Izinsiza zokubheka izithombe ezisemathinini ezakhiwo.
• Amakhamera ezolimo alandelela impilo yezitshalo emapulazini.
• Amakhamera okuphendula izinhlekelele afakwe ezindaweni ezinomsebenzi ophukile.
Ezimeni ezinjalo, i-AI ethuthukisiwe iqinisekisa ukuthi ikhamera iqhubeka nokusebenza, ithwebula ulwazi, futhi igcine idatha endaweni kuze kube uxhumano luphinde lwenziwe.
Izicelo Zangempela Zezinhlelo Zokusebenza Zama-Camera Modules E-On-Board
Amamojula e-AI akwi-skrini asevele aguqula imboni yonke. Nansi eminye yemisebenzi ethinta kakhulu:
1. Izinsiza Zokusetshenziswa Kwabathengi: Izinsiza Ezihlakaniphile, Ezinobumfihlo Obukhulu
• Izinsimbi Zokungena Ezihlakaniphile Nezikhamuzi: Amabhendi afana neRing, Nest, kanye neEufy manje anikela ngezinsimbi zokungena ezine-AI efakwe ngaphakathi engakwazi ukuhlukanisa phakathi kwabantu, izilwane, amaphakheji, nezimoto—kunciphisa izaziso ezingalungile nokuvikela ubumfihlo.
• Ama-smartphone: Amafoni aphezulu (iPhone 15, Samsung Galaxy S24) asebenzisa i-AI efakwe ngaphakathi kumamojula wamakhamera awo ukuze athole izici ezifana nemodi yephupho, imodi yephrofayela, nokuhumusha kwezilimi ngesikhathi sangempela (ngokusebenzisa ikhamera).
• Wearables: Ama-tracker wezempilo kanye nezinsiza zokuhlola ezihlakaniphile zisebenzisa amakhamera e-AI amancane akhelwe ngaphakathi ukuze alandele izinga lenhliziyo, athole ukuwa, noma ngisho anhlaziye impilo yesikhumba—konke lokhu ngaphandle kokuxhuma kufoni.
2. Izimoto: Ukushayela Okuphephile & Ukuzimela
• Izinhlelo Zokwesekwa Kwezithuthi Ezithuthukisiwe (ADAS): Amakhamera anemisebenzi ye-AI efakwe ngaphakathi efana nezixwayiso zokuhamba emgwaqeni, ukuhamba okuzenzakalelayo kokuphuthumayo, kanye nokulawula ukuhamba okushintshashintshayo. Isibonelo, i-Tesla's Autopilot isebenzisa amakhamera angu-8 e-AI afakwe ngaphakathi ukuze processing idatha yokubona ngesikhathi sangempela.
• Ukuhlola Okukhona Emotweni: Amakhamera athola ukuhamba phansi komshayeli, ukuphazamiseka (isb., ukusetshenziswa kwefoni), noma ukuvela kwezingane (ukuvimbela ukufa kwezingane emotweni efudumele) usebenzisa i-AI esebenzayo.
3. Industrial IoT (IIoT): Ukusebenza kahle & Ukuphepha
• Ukulawulwa Kwekhwalithi: Amakhamera emigqeni yokukhiqiza asebenzisa i-AI ethuthukisiwe ukuze athole amaphutha (isb., izikhala ezingxenyeni zensimbi, amalebula angahambelani) ngokuqonda okungaphansi kwe-millimeter, kunciphisa ukulahleka futhi kuthuthukise ikhwalithi yomkhiqizo.
• Ukugcinwa Okubikezelayo: Amakhamera alandelela imishini ukuze abone izimpawu zokugqoka (isb., ama-bolts aphukile, ukuvuza kwefutha) futhi axwayise amaqembu okugcina ngaphambi kokuba kube nokwehluleka.
• Ukuphepha Kwabasebenzi: Amakhamera athola ukuziphatha okungaphephile (isb. , ukungagqoki i-PPE, ukungena ezindaweni ezivinjelwe) futhi aqhube izaziso zangesikhathi sangempela.
4. Impilo: Ukuhlola Okufinyeleleka, Okuyimfihlo
• Izinsiza Zokwelapha Ezithwalwayo: Amakhamera athwalwayo anama-AI akhombisa usizo odokotela ekuxilongeni izimo zesikhumba, izifo zamehlo, noma izinkinga zamazinyo ezindaweni ezikude—akudingeki ukuhlolwa kwelebhu noma ukuxhumana nefu.
• Izinsiza Zokuhlinza: Amakhamera ahlanganiswe kumarobhothi wokuhlinza asebenzisa i-AI efakwe ukuze athuthukise ukubonakala, alandele amathuluzi, futhi aphinde asize ngokuqondile ekwenzeni izikhala ezinemininingwane.
5. Retail & Hospitality: Iziqu zokuqinisekisa ezihlukile
• Ukuhlaziywa Kwamakhasimende: Amakhamera anobuhlakani bokwenziwa abheka ukuhamba kwabantu, izici zamakhasimende, nezindlela zokuthenga (ngaphandle kokugcina idatha yomuntu siqu) ukusiza abathengisi ukuthi baphucule ukwakheka kwezitolo kanye nezimpahla.
• Self-Checkout: Amakhamera ezikhungweni zokuzihlola (isb. Amazon Go) asebenzisa i-AI efakwe ngaphakathi ukuze aqaphele izinto njengoba amakhasimende ezithatha, akhiphe isidingo sokuhlola amakhodi e-bar.
Izinkinga Zamanje Nezinguquko Ezenza Ikusasa
Ngenkathi ama-module wekhompyutha ye-AI esebenzisa ikhamera esesimweni esihle, asabhekene nezinselelo ezintathu ezibalulekile—ezilungiswa ngokushesha ngabaklami:
1. Ukulinganisa Amandla & Ukusebenza
Amamojula ekhamera (ikakhulukazi lawo asebenzisa ibhethri) adinga ukuba nekhono lokonga amandla. Ukusebenza kwe-algorithms ye-AI kudla amandla, ngakho abakhiqizi bathuthukisa ama-accelerators e-AI aphansi (isb., uchungechunge lwe-Ethos-U lwe-Arm) ahlinzeka ngempumelelo ngaphandle kokuphula impilo yebhethri. Isibonelo, ikhamera yokuphepha enezinhlelo ze-AI ezisemqoka manje ingasebenza ezinyangeni eziningi ngombhede owodwa, uma kuqhathaniswa nezinsuku ezingu- weeks nje eminyakeni embalwa edlule.
2. Ukukhulisa Amandla e-AI ku-Hardware Encane
Njengoba ama-model e-AI eqhubeka ethuthuka (isb., ukutholwa kwezinto eziningi, ukuqonda izigcawu ze-3D), ukufaka lawa ma-model kumamojula amancane wezithombe kusemqoka. Isixazululo? Ama-model e-AI akhelwe ngokwezifiso akhiwe ikakhulukazi ukuze asebenze kumadivayisi aseceleni. Izinkampani ezifana ne-Nvidia ne-Intel zisebenza kuma-model "okwenziwa kube ngcono" aseceleni agxile ekusheshiseni nasekuthwaleni kunokunembile okuphelele (lapho kungadingeki).
3. Ukwehlisa Izindleko Zokwamukelwa Kwamakhulu
Izikhuthazi ze-AI ezikhethekile zisetshenziselwa ukwengeza izindleko ezinkulu kumamojula wekhamera, okunciphisa ukusetshenziswa kwabo kumikhiqizo ephezulu. Namuhla, umnotho wezinga elikhulu kanye nezithuthukisi ekwakhiweni kwechip ziye zehla izindleko. Isibonelo, imojula yekhamera ye-AI esebenzayo manje ibiza okungama-$20 kuphela—okwenza kube lula ukufinyelela kumabhizinisi amancane nemikhiqizo yabathengi.
Ezinye izinguquko eziqhuba ukukhula zifaka phakathi:
• Multi-Modal AI: Amamojula wekhamera ahlanganisa idatha yokubona nedatha ye-audio, izinga lokushisa, noma idatha yesikhumbuzo sokunyakaza (yonke iphroseswe ngaphakathi) ukuze kutholakale ukuqonda okunembile.
• Izibuyekezo ze-Over-the-Air (OTA): Amamojula angathola imodeli ezintsha ze-AI noma izici kude, elongela impilo yawo.
• Izinsiza Zokwakha Ezivulekile: Izakhiwo ezifana ne-TensorFlow Lite Micro ne-Edge Impulse zenza kube lula kubathuthukisi ukwakha nokufaka i-AI ethuthukisiwe, ngisho noma bengenalo ulwazi oluthile.
Umgwaqo Olandelayo: Yini Elandelayo Kuma-Module Wekhamera ye-AI Ekhona?
Ikusasa lezi zinhlelo ze-AI ezikhamera ezisemkhathini lichazwa yizitayela ezintathu: amandla amaningi, ukusebenza kahle okwengeziwe, nokufinyeleleka okwengeziwe. Nansi okulindelekile eminyakeni ezayo engu-3-5:
1. Ngaphezulu Kancane, Amamojula Anamandla: Ama-accelerators e-AI azokuqhubeka nokuncipha, avumele i-AI ethwalwayo ukuba ihlanganiswe kumakhamera amancane (isb., ama-sensors amancane okugqoka, ama-drone, noma ama-implants wezokwelapha).
2. Amakhono e-AI Aphakeme: Imodyuli zizosekela imisebenzi eyinkimbinkimbi efana nokwakhiwa kabusha kwe-3D ngesikhathi sangempela, ukuqashelwa kwemizwa, kanye nezibalo zokubikezela—konke kukhombisa.
3. Ukusetshenziswa Kwamakhulu Kwezimboni: Kusukela kumabhizinisi amancane asebenzisa amakhamera e-AI angabizi ukuze aqinisekise ukuphepha kuya kubalimi abasebenzisa wona ukuze baphathe izitshalo, lezi zinsiza zizoba khona njengokujwayelekile njengamakhamera ajwayelekile namuhla.
4. Izici Zokuvikela Ezinhle: Ama-model e-AI azofundiswa "ukukhohlwa" idatha ebucayi (isb., ukungacacisi ubuso ngokuzenzakalelayo) futhi ahambisane nemithetho yokuvikela ubumfihlo emhlabeni jikelele ngaphandle kokwenza okuthile.
5. Ukuhlanganiswa ne-IoT Ecosystems: Amamojula we-AI akwi-board azoxhuma kahle nezinye izinsiza ezihlakaniphile (isb., ukukhanya okuhlakaniphile, ama-thermostat, noma ama-robot asezimbonini) ukuze kudalwe izinhlelo ezizenzakalelayo ngokuphelele.
Isiphetho: I-AI Yokuhamba Phambili Iyikhamera Yezingxenye Zesikhathi Esizayo
Ngakho, ama-module wekhamera asekelwa yini ukucubungula kwe-AI okukhona? Impendulo iyinhlamvu "yebo"—futhi le teknoloji ayisiyona into ethile ethokozisayo ethathwa kuphela kumikhiqizo ephezulu. Iyi-innovation ejwayelekile eshintsha indlela esixhumana ngayo namakhamera, kusukela ezinsizeni zokuphepha ekhaya ezihlakaniphile kuya ezindleleni eziphephile nasemafektri asebenza kahle.
Ukushintsha ukuya ku-AI ethuthukisiwe akukhona nje ngokucubungula okusheshayo noma ngcono ukuvikelwa (nokho lezo zinto zibalulekile). Kuqondene nokuguqula amakhamera abe "izindawo ezihlakaniphile" ezingakwazi ukwenza izinqumo zazo, ngaphandle kokuthembela ezakhiweni zangaphandle. Kubantu bezentengiselwano, lokhu kusho izindleko eziphansi, ukusebenza kahle okungcono, kanye namathuba amasha okwenza imali. Kubathengi, lokhu kusho amadivayisi aphephile, avikelekile, futhi alula.
Njengoba imishini iba namandla, ama-model e-AI eba nekhono, futhi izindleko ziba lula ukufinyelela, ama-module e-AI akhishwe ezithombeni azokuqhubeka nokwandisa emikhakheni emisha nasezinhlelweni zokusetshenziswa. Kungakhathaliseki ukuthi wakhe umkhiqizo, uthuthukisa ubuchwepheshe benkampani yakho, noma nje unentshisekelo ngekusasa lobuchwepheshe, i-AI ekhulisiwe iyitrendi efanele ukuyibheka.
Uma ufuna ukuhlanganisa amamojula wekhamera ye-AI efakwe ngaphakathi emkhiqizweni wakho noma emsebenzini wakho, okubalulekile ukuhlinzeka ngezidingo zakho ezithile: ukusebenza ngesikhathi sangempela, ubumfihlo, izindleko, noma ukusebenza kahle kwamandla. Ngemojula efanele kanye nemodeli ye-AI ehleliwe, amathuba awapheli.
Isikhathi se “kamera ehlakaniphile” sesifikile—futhi siba hlelekile kuphela.