Izesayensi & Umsebenzi Wokwakha Amamephu Wobukhulu NgeziMojuli Zekhamera ZeStereo

Kwadalwa ngo 2025.11.20
I-sterio vision, ubuchwepheshe obukhuthazwe ukuqonda kwabantu ngezinhlangothi ezimbili, buphumelele njengesisombululo esihlukahlukene sokwaziswa kwezimo ze-3D—ukukhuthaza izinguquko ezivela kumakhanda e-AR, ama-robot azimele, kuya ezinhlelweni zokuhlola ezimbonini. Ngokwehlukile kumaphuzu e-LiDAR asebenzisa i-laser noma izilinganiso zesikhathi sokuhamba ze-TOF, ama-module we-stereo camera asebenzisa umehluko omncane phakathi kwezithombe ezihlangene ukuze abale ukujula, enikeza indlela eshibhile, enezindleko eziphansi esebenzisa amandla, ethula ibhalansi phakathi kokusebenza nokufinyeleleka.
Ngokuyinhloko, ukuhlela ubukhulu ngezithombe ze-stereo kuyashadiswa kwezemfundo (i-triangulation) kanye nombono wekhompyutha (ukucubungula izithombe). Nakuba umqondo ubukeka ulula—izithombe ezimbili ziqopha imibono ehlanganisiwe ukuze ziqagule ibanga—ukwakha ukwethembeka okuphezuluimephu yokujula kudinga ukuqonda okujulile kokwakhiwa kwehardware, izimiso zokukhanya, kanye nokulungiswa kwe-algorithm. Le miphumela ihlola lo mqondo oyisisekelo, izici ezisebenzayo, kanye nokuthuthukiswa okuqhubekayo okuchaza ukwakhiwa kwe-stereo depth mapping okuhle, kudlula imiyalelo eyinyathelo-nyathelo ukuze kuvezwe "kungani" ngemuva kokukhetha ngakunye kwezobuchwepheshe.

I-Physics ye-Stereo Depth: I-Triangulation Isebenza

Ukubona kwabantu kusekelwe emandleni ebhreyini okuchaza ukungafani okuncane phakathi kwalokho okukhombisa iso ngalinye—okwaziwa ngokuthi ukungafani kwezinhlangothi—ukuhlola ibanga. Amakhamera e-stereo aphinda le nqubo esebenzisa ama-lenses amabili ahambisanayo, ahlukaniswe ngendawo eqinile ebizwa ngokuthi "i-baseline." U relationship phakathi kwale baseline, ubude bokugxila bekhamera, kanye nokungafani (ukwehluka kwe-pixel phakathi kwezithombe ezimbili) kwakha isisekelo sokubala ukujula.
I-formula eyinhloko—Ubukhulu = (I-Baseline × Ubude Bokugxila) / Ukwehluka—ikhombisa izinto ezintathu ezixhumene ezakha ukusebenza. Izinto eziseduze zenza ukwehluka okukhulu (ukuphambuka kwe-pixel okukhulu), kanti izinto ezikude zikhombisa ukwehluka okuncane. I-baseline ende ithuthukisa ukunemba kokude kodwa ivimbela ukuhloleka eduze, njengoba ukuphambuka phakathi kwezithombe kuba kuncane kakhulu ukuze kukhishwe ngokwethembeka. Ngakolunye uhlangothi, i-baseline emfushane ikhuluma kahle ekwakheni ubukhulu bendawo eduze kodwa ibhekana nezimo ezikude. Ubude bokugxila bungeza enye ingxenye yokuhweba: ama-lens anobubanzi obukhulu (ubude bokugxila obufushane) abamba izimo ezibanzi kodwa anciphisa ukunemba kobukhulu, kanti ama-lens e-telephoto (ubude bokugxila obude) akhulisa ukunemba ngentengo yokuba nendawo yokubuka encane.
Lezi zikhala zomzimba zisho ukuthi akukho mkhiqizo owodwa wesithombe se-stereo osebenza kuzo zonke izimo zokusetshenziswa. I-module eyenzelwe i-AR yangaphakathi (ubude obuyi-0.2–5m) izoba ne-baseline emfushane (3–5cm) kanye ne-lens enobubanzi obukhulu, kanti eyenzelwe i-robotics yangaphandle (ubude obuyi-5–20m) izoba ne-baseline ende (10–15cm) kanye nobude bokugxila obude. Ukuqonda leli balanse kubalulekile ekukhetheni noma ekwakheni uhlelo oluhambisana nezidingo zangempela.

Izinto Eziphathelene Nezinto Zokusebenza: Ngaphezu Kokukhetha IModule

Ukusebenza kwe-stereo camera kuhlobene ngqo nomklamo wezinsiza, lapho ingxenye ngayinye ithonya khona ukunemba, isixazululo, kanye nezinga lokukhuphuka kwephethini yokugcina. Imakethe inikeza uhla lwezinketho—kusukela ezinhlelweni zokwakha ezizenzekelayo kuya kumamojula wekhwalithi ephezulu—kodwa ukukhetha okuhle kakhulu kuncike ezidingweni ezikhethekile zohlelo, hhayi kuphela entengo noma igama lomkhiqizo.

DIY vs. Izinqubo Ehlanganisiwe vs. Izinhlelo Zochwepheshe

DIY configurations, typically consisting of two USB webcams and a 3D-printed mount, offer unmatched customization and affordability (30–80) but require meticulous manual alignment and synchronization. Even minor shifts in lens parallelism (as little as 1mm) can introduce significant depth errors, making these setups ideal for learning or low-stakes prototyping rather than commercial use.
Izinga lokungena lezi zinhlelo ezihlanganisiwe (isb., Arducam OV9202, 50–120) likhipha ubuhlungu bokuhlanganisa ngezibuko ezilungiswe efektri, ezibekwe ngaphambi. Lezi zixazululo ezixhunywe futhi zidlalayo zenza kube lula ukuhlela kodwa ngokuvamile ziza nezinkinga: ububanzi obulinganiselwe (0.5–3m) kanye nezixazululo eziphansi ezingase zingafaneleki ezinhlelweni ezidinga kakhulu.
Amamojula obuchwepheshe (isb., Intel RealSense D455, ZED Mini, 200–500) axazulula lezi zinkinga ngokunembile okuphezulu (±2%), ububanzi obubanzi bokujula (0.1–20m), kanye ne-IMUs ezakhelwe ngaphakathi zokulungisa ukuhamba. Ukuhlolwa kwabo kwefektri nokuhlangana kwehardware kuqinisekisa ukuhambisana, okwenza kube kufanelekile ukutshalwa kwezimali emikhiqizweni yezohwebo noma emaphrojekthi abalulekile njengokubamba kwe-robotic noma ukuhamba okuzenzakalelayo.

Izici Eziyinhloko Zezinto Zokusebenza Ezibalulekile

Ngaphandle kokuphakama kwe-bhasi kanye nobude bokugxila, ukuvumelanisa kwesensori akuphikiswa. Amakhamera angavumelani athwebula izithombe ngezikhathi ezihlukene kancane, okuholela ekubhaleni okukhanyayo nokubala okungavumelekile—okuyinkinga ikakhulukazi ezimeni ezihambayo. Ukuvumelanisa kwehardware (ngokusebenzisa ama-pin akhethekile) kuyathandwa, kodwa ukuhlela okusekelwe kusoftware kungase kusebenze ezindaweni ezimile.
Ukuxazulula kwesensori kuthola ibhalansi phakathi kokunembile nokushesha kokucubungula. I-720p (1280×720) iyindawo efanele kakhulu ezinhlelweni eziningi, inikeza imininingwane eyanele yokuhambisana kokuphambuka okwethembekile ngaphandle kokuphazamisa izinsiza zokucubungula. Izinsensi ze-1080p zinikeza ukwethembeka okuphezulu kodwa zidinga imishini enamandla ukuze zigcine izinga lokuhamba kwesikhathi (30+ FPS).
Ikhwalithi ye-lens nayo idlala indima: ama-lens aphansi anenani akhanyisa ukuguqulwa (okungukuthi, radial noma tangential) okuphambukisa izithombe futhi kuphazamise ukubalwa kokuhlukahluka. Iglasi yekhwalithi ephezulu noma ukulungiswa kokuguqulwa okuhlelwe efektri kunciphisa le nkinga, kunciphisa isidingo sokucubungula okukhulu ngemva.

Calibration: Ukulungisa Ukuhluleka

Ngisho nezithombe ezihlelwe kahle kakhulu zinezinkinga ezithile: ukungahambi kahle kwemibono, ukungahambisani kancane phakathi kwemibono, kanye nezinguquko ekuthambekeni kwesikhala. Ukuhlela kubhekana nalezi zinkinga ngokubala izinhlelo ezimbili zamapharamitha: ezisemqoka (ezithile kumakhamera ngamunye, isibonelo, ubude bokugxila, ama-coefficient wokuphambuka) kanye nezangaphandle (indawo ethile kanye nokuhleleka kwemakhamera ezimbili).

Inqubo Yokulinganisa: Indlela Yezesayensi

Ukulinganisa kusekelwe kumthombo owaziwa—ngokuvamile iphethini ye-chessboard (8×6 izikwele, 25mm ngasikwele)—ukwakha ubudlelwano phakathi kwamaphuzu we-3D emhlabeni wangempela kanye nezithombe zawo ze-2D ezithombeni zekhamera. Le nqubo ihilela ukuthwebula izithombe eziyi-20–30 ze-chessboard ezivela ezikhathini ezahlukene, kude, nasezindaweni (kwesokunxele, kwesokudla, emaphakathi kwefremu). Le miphumela iqinisekisa ukuthi i-algorithm yokulinganisa inedatha eyanele yokumodela kokubili izici ezisemqoka nezangaphandle ngok准确.
Ukusebenzisa amathuluzi afana ne-OpenCV's cv2.stereoCalibrate(), i-algorithm ibala ukuthi izithombe ze-khamera zihambisana kanjani ne-geometry ye-chessboard eyaziwayo (eyalinganiswa nge-reprojection error). I-reprojection error engaphansi kwe-1 pixel ibonisa ukulungiswa okuhle; amanani angaphezulu kwe-2 pixels akhombisa isidingo sokuphinda uthwebule izithombe noma ulungise ukuhlela kwekhamera.
Idatha yokulinganisa—egcinwe njengezixhumanisi zezimfanelo zangaphakathi, ukujikeleza, nokuhumusha—isetshenziswa ukuze ikhiphe izithombe eziphukile futhi ilungise ukuguqulwa kwe-lens ngaphambi kokubala ukungafani. Ukweqa noma ukuphuthuma lesi sigaba kuholela emamephu aphukile, angalungile, kungakhathaliseki ukuthi iyiphi i-algorithm esetshenzisiwe.

Izinkinga Ezivamile Zokulinganisa

Izithombe zechessboard ezikhanyisiwe kahle noma ezicacile, izikhala zokuthwebula ezilinganiselwe, noma ukuhamba kwekhamera ngesikhathi sokulungisa konke kwehlisa imiphumela. Ngisho neziphazamiso ezincane osayizi bezikwele zechessboard (isb. ukusebenzisa izikwele ezingu-20mm esikhundleni se-25mm) zingadala ukungahambisani kokujula. Kwimishini ye-DIY, ukufakwa okuqinile kubalulekile ukuvimbela ukuhamba kwe-lens phakathi kokulungisa nokusebenzisa.

Isofthiwe: Kusuka Ezithombeni Kuya Emamephu Edeepu

Uhambo oluvela ezithombeni ezihlanganisiwe luphakathi kwepipelini elinengqondo: ukungaphazamiseki, ukuvumelanisa ukwehluka, ukuguqulwa kokujula, nokucubungula ngemva. Isinyathelo ngasinye sakha phezu kwesinyathelo esedlule, nezinketho ze-algorithm ezihlelwe ukuze zifanele ukusebenza nokunembileko kwesicelo.

Ukulungiswa Kwezimfanelo: Ukulungisa Izithombe Eziphukile

Ukuphazamiseka kwe-lens kuyaphambanisa imigqa eqondile futhi kushintshe izikhundla ze-pixel, okwenza kube nzima ukuvumelanisa kahle amaphuzu ahambisanayo phakathi kwezithombe zekhona nezokudla. Ngokusebenzisa amapharamitha wokulungisa, ukungaphazamiseki kulungisa lezi zimpambaniso ukuze kukhiqizwe izithombe "ezilungisiwe" lapho imigqa ye-epipolar (imigqa lapho amaphuzu ahambisanayo atholakala khona) ikwi-horizontali. Le ndlela yokwenza kube lula ikhulisa ukuvumelanisa ukungafani ngokunciphisa ukufunwa kwamaphuzu ahambisanayo kube emgqeni owodwa.

Ukufanisa Ukungafani: Ukuthola Amaphuzu Ahambisanayo

Ukufanisa ukungafani kuyinhliziyo yokubona kwe-stereo—ukuhlonza ukuthi iyiphi i-pixel esithombeni sokudla ehambisana ne-pixel ngayinye esithombeni sokwehla. Izinhlelo ezimbili eziyinhloko zikhokhela lesi sigaba:
• Ukufanisa Amabhlogo (BM): Indlela esheshayo, elula efanisa amabhlogo amancane e-pixels (isb., 3×3 noma 5×5) phakathi kwezithombe. I-BM ikhangwa kumadivayisi anamandla aphansi afana ne-Raspberry Pi kodwa ibhekana nezindawo ezinganqamuki (isb., odongeni abamhlophe) lapho ukufana kwamabhlogo kunzima ukukuhlukanisa.
• I-Semi-Global Block Matching (SGBM): I-algorithm eqinile kakhulu ecatshangelayo umongo wesithombe jikelele kunokubheka izithombe zendawo. I-SGBM iphatha kahle izindawo ezinganqamukiwe nezivimbela kodwa idinga amandla amaningi wokubala. Imodi yayo yokuhambisana ye-3-way (ukuqhathanisa kwesobunxele kuya kwesokudla, kwesokudla kuya kwesobunxele, kanye nezivivinyo zokuhambisana) ithuthukisa ukunemba.
Ngokwezinye izinhlelo, i-SGBM ikhethwa ngenxa yokwethembeka kwayo, ngezinga elinjengokuthi usayizi we-blokhi (3–7 pixels) kanye nezimo zokulungisa (P1, P2) zilungiswe ukuze zilinganiswe ukunemba nokushesha.

Ukuguqulwa Kwejula & Ukuveza

Ngokusebenzisa ifomula ye-triangulation eyinhloko, amanani e-disparity aguqulwa abe ubukhulu bempilo yangempela (ngemitha). Inani elincane le-epsilon (1e-6) livimbela ukuhluza ngo-zero kumapikseli angenayo i-disparity efanele. Ukuhlunga ubukhulu bube ngaphakathi komkhawulo ophusile (isb. 0.1–20m) kususa ama-outliers abangelwa ukuhamba okungafanele.
Ukuboniswa kubalulekile ekuhumusheni imephu yokujula. Imephu ye-grayscale isebenzisa ukukhanya ukuveza ibanga (eduze = ukukhanya), kanti imephu yemibala (isb. jet) yenza ama-gradient ejula abe lula ukuqonda—kubalulekile ezibonakalweni noma ekuhloleni amaphutha. I-OpenCV's cv2.applyColorMap() ilula le nqubo, iguqula idatha yokujula el raw ibe yimifanekiso ebonakalayo.

Post-Processing: Ukuhlanza Umphumela

Iziqophi ezijulile ezivela emithonjeni zihlala ziqukethe umsindo, izikhala, kanye nezinto ezingajwayelekile. Izinyathelo zokucubungula ngemva kokuthola zixazulula lezi zinkinga ngaphandle kokulibazisa okukhulu:
• Bilateral Filtering: Ihlisa umsindo ngenkathi igcina imiphetho, igwema ukujula kwemikhawulo ejwayelekile ne-Gaussian blur.
• Ukuphothulwa KweMorphe: Gcwalisa izikhala ezincane (ezidalwe ukungabi khona kokuhambisana kokuhlukahluka) usebenzisa ukujula kulandela ukuwa, kugcine isakhiwo sokujula jikelele.
• Ukucwecwa Kwe-Median: Kususwa ama-outliers aphakeme kakhulu (isb., ukuhamba okungazelelwe kokujula) angaphazamisa imisebenzi esheshayo efana nokutholwa kwezinto.
Lezi zinyathelo zibalulekile kakhulu ezinhlelweni zangempela, lapho idatha yokujula eqhubekayo ibalulekile ukuze kuqinisekiswe ukwethembeka.

Iphumelelo Esemthethweni: Ukuhlola & Ukuhlela

Ukusebenza kokuhlonza ubukhulu be-stereo kuncike kakhulu endaweni. Lokho kusebenzayo emlabathini okukhanyayo, okunezinto eziningi kungase kube nokwehluleka ezindaweni ezinemibala ephansi, ezingenazo izinto, noma ezisemoyeni. Ukuhlola ezimeni ezihlukahlukene kubalulekile ukuze kutholakale ubuthakathaka nokuthuthukisa uhlelo.

Izinguquko Zemvelo

• Izimo Zokukhanya Okuphansi: Ukukhanya okwengeziwe kuthuthukisa ukubonakala kwe-texture, kunciphisa umsindo odalwe yikhwalithi yesikhala. Gwema ukukhanya kwe-infrared uma usebenzisa amakhamera wombala, njengoba kungaphambanisa ibhalansi yombala nokuhambelana kokuhlukahluka.
• Izindawo Zangaphandle Ezikhanyayo: Amafutha apolarizing anciphisa ukukhanya okukhanyayo, okwenza kube nzima ukubona imicu futhi kuholele ekulahlekelweni kwedatha yokuhlukahluka. Izithombe ezikhanyisiwe kakhulu kufanele zilungiswe ngezilungiselelo zokukhanya kwekhamera ukuze kugcinwe imininingwane.
• Izindawo Ezingenamathambo: Ukwengeza amaphethini anokuphikisana okuphezulu (izimpawu, ithayela) ezintweni ezithambile (isb. amabhokisi amhlophe) kuhlinzeka ngezinkomba zokubona ezidingekayo ukuze kuqinisekiswe ukufaniswa kokuhlukahluka.

Ukusebenza Kwezokusebenza Ukuze Kusetshenziswe Ngempela

Ngokwezikhalazo ezidinga ama-FPS angaphezu kwama-30 (isb. AR, ubuchwepheshe bokwenza), ukuhlela kahle kubalulekile:
• Ukunciphisa Isixazululo: Ukwehla kusuka ku-1080p kuya ku-720p kunciphisa isikhathi sokucubungula ngempumelelo ngephutha elincane lokulahleka kwemibono.
• Ukukhetha i-Algorithm: Ukushintsha kusuka ku-SGBM kuya ku-BM ezindaweni ezimile noma ezinemininingwane ephansi kukhuphula isivinini.
• Ukusheshiswa Kwe-Hardware: I-CUDA-esheshisiwe ye-OpenCV noma i-TensorRT ikhipha processing ku-GPU, ivumela ukwakhiwa kwe-depth mapping kwe-1080p ngesikhathi sangempela.

Izinto okufanele zicatshangelwe uma kufakwa i-Edge

Ukufaka kumadivayisi anemithombo elinganiselwe (i-Raspberry Pi, i-Jetson Nano) kudinga izinguquko ezengeziwe:
• Izincwadi Ezilula: I-OpenCV Lite noma i-PyTorch Mobile yehlisa ukusetshenziswa kwememori ngaphandle kokuphuca ukusebenza okuyinhloko.
• Ukulungiswa Okubalwa Ngaphambi: Ukugcina amapharamitha wokulungiswa kugwema ukubalwa kwedivayisi, kugcina amandla nesikhathi.
• Ukuvumelanisa Kwe-Hardware: Ukusebenzisa ama-GPIO pins ukuze kuqinisekiswe ukuvumelana kwekhamera kuqinisekisa ukuhlela kweframe ngaphandle kokuphazamiseka kwesofthiwe.

Ukuxazulula Izinkinga: Ukubhekana Nezinkinga Ezivamile

Noma ngabe kukhona ukuklama ngokucophelela, izinhlelo zokujula kwe-stereo zibhekana nezinkinga ezivamile—eziningi zazo ziqhamuka emthethweni wezomhlaba noma ezimfuneko zemvelo:
• I-Depth Maps Ebonakalayo: Imvamisa ibangelwa yizibuko ezingakahlolwa kahle noma ukungahambisani. Phinda uhlolisise ngezithombe ezisezingeni eliphezulu futhi uqinisekise ukuthi i-camera mount iqinile.
• Izikhala kumaMamephu Wokujula: Ukungabi nekhwalithi, ukuvinjwa, noma ukukhanya okuphansi yizimbangela eziyinhloko. Thuthukisa ukukhanya, engeza umfanekiso, noma ushintshe uye ku-SGBM ukuze uphathe ukuvinjwa kangcono.
• Izinani Zobukhulu Ezihambisanayo: Amakhamera angahambisani noma ukungacacisi kokunyakaza kuphazamisa ukufaniswa kokuhlukahluka. Vula ukuhambisana kwehardware noma usebenzise izikhathi zokukhanya ezimfishane ukuze uqedele ukuhamba.
• Ukucubungula Kancane: Ukuxazulula okuphezulu noma amabhlogo e-SGBM amakhulu kuthinta imishini. Nciphisa ukuxazulula, unciphise usayizi wombhalo, noma ungeze ukusheshiswa kwe-GPU.

Ikusasa Lokuhlonza Ubukhulu BeStereo

I-sterio vision iyashintsha ngokushesha, ngezindlela ezintathu ezibalulekile ezakha ikusasa layo:
• AI-Driven Disparity Matching: Imodeli yokufunda ejulile efana ne-PSMNet ne-GCNet idlula ama-algorithms ajwayelekile ezindaweni ezinezithombe eziphansi, ezishintshashintshayo, noma ezivimbela. Lezi zimo zifunda ukufanisa ukungafani kusuka kumongo, ziqhuba ukunemba ngaphezu kwalokho okungenziwa ngezindlela ezisekelwe emithethweni.
• Multi-Sensor Fusion: Ukuhlanganisa amakhamera e-stereo ne-TOF sensors noma ama-IMUs kudala izinhlelo ezihlanganisiwe ezisebenzisa amandla obuchwepheshe ngalinye. I-TOF inikeza idatha ye-depth esheshayo, esifushane, kanti i-stereo ikhuluma kahle ngokuqina kokude—ndawonye, zinikeza ukusebenza okuqinile kuyo yonke imikhawulo.
• Ukuhlanganiswa kwe-Edge AI: Imodeli ye-TinyML esebenza kumadivayisi anamandla aphansi (isb. Raspberry Pi Pico) ivumela ukuhlela ubukhulu bempela ngesikhathi sokusebenza kwezicelo ze-IoT nezokugqoka. Lezi zimo zenzelwe ukunciphisa ukusetshenziswa kwamandla, kuvula izimo ezintsha zokusetshenziswa emkhakheni wezempilo, ezolimo, nasemadolobheni akhanyayo.

Isiphetho

Ukudala imephu yokujula ngezikhangiso ze-stereo akukhulumi kakhulu ngokulandela inqubo ethile, kodwa kunalokho kubalulekile ukuqonda ukuxhumana phakathi kwe-physics, hardware, kanye ne-software. Impumelelo itholakala ekuvumelaneni kwezinketho zobuchwepheshe nezidingo zangempela—ukukhetha ikhamera efanele yokusetshenziswa, ukulungisa ngokucophelela ukuze kulungiswe amaphutha, nokulungisa ama-algorithms ukuze kuhlangabezane nokunembile nokusebenza.
I-**Stereo vision** inamandla amakhulu kakhulu ekutholakaleni kwayo: inikeza indlela enezindleko eziphansi yokubona i-3D ngaphandle kokudideka kwe-**LiDAR** noma izidingo zamandla ze-**TOF**. Kungakhathaliseki ukuthi kwakhiwa i-DIY **AR** headset, uhlelo lokuhamba kwe-robotic, noma ithuluzi lokuhlola kwezomnotho, amakhamera e-stereo ahlinzeka ngesisekelo esiguquguqukayo sokwakha okusha. Njengoba i-**AI** kanye nokuhlanganiswa kwezinsiza eziningi kuthuthuka, ukwakhiwa kwe-stereo depth kuzophinde kukhule kube namandla futhi kube nezinhlobonhlobo. Kubathuthukisi abakulungele ukuzama, ukuxazulula, nokuzivumelanisa nezimo zemvelo, ama-modules amakhamera e-stereo ahlinzeka ngendawo yokungena emhlabeni ojabulisayo we-3D computer vision—owodwa lapho umehluko phakathi kwezithombe ze-2D nokuqonda kwe-3D uxhaswa yisimiso esilula kodwa esinamandla sokubona ngamehlo amabili.
imaphi, amakhamera e-stereo, ukubona kwe-stereo, ukuqonda isimo se-3D
Uxhumane
Sicela uxhumane nathi uhambele

Mayelana nathi

Usizo

+8618520876676

+8613603070842

Izindaba

leo@aiusbcam.com

vicky@aiusbcam.com

WhatsApp
WeChat