Amamojula weKhamera kuMphakathi Wokuphathwa Kwezibani Zomgwaqo: Ukuguqula Ukuhamba Kwedolobha Ngobuchwepheshe

Kwadalwa ngo 11.14
Ukwakhiwa kwemigwaqo emadolobheni akukhona nje ukudumazeka kwansuku zonke—kubiza amadolobha izigidigidi ekulahlekelweni kokukhiqiza, kukhuphula ukukhishwa kwekhabhoni, futhi kukhuphula ubungozi bezingozi. Kwesikhathi eside, izinhlelo zokukhanya kwemigwaqo zisebenze ngezikhathi ezimisiwe noma ama-sensors ayisisekelo, zikhathazekile ukujolisa ezinguqukweni zangempela ezifana nokwanda kwabantu abahamba ngezinyawo ngokushesha noma izithiyo ngesikhathi sokuhamba. Namuhla,amamojula ekhameraseziqhamuka njenge "amehlo" okuphathwa kwemigwaqo okuhlakaniphile, ziguqula izimpawu ezimile zibe izinhlelo ezisebenza ngedatha eziphendula ezidingweni zangempela zomgwaqo. Le blog ibheka ukuthi ama-module wekhamera aguqula kanjani ukuphathwa kwezibani zomgwaqo, amakhono awo ayinhloko, imiphumela yangempela, nokuthi yini elandelayo kule teknoloji eshintsha umdlalo.

Ukwakhiwa Kwezimfanelo Zokuphathwa Kwezimoto: Kungani Amamojula Ekhompyutha Engashintsha Umjikelezo

Ngaphambi kwemodyuli zekhamera, izinhlelo zokukhanya kwemigwaqo zaba nezithiyo ezimbili ezibalulekile: ukungabi nolwazi oluhle ngesimo nokuqina kokuguquguquka. Ake sihlukanise ukuthi ubuchwepheshe bekhamera baphendula kanjani lezi zikhala ngokulandela ukuthuthuka kwabo.

1. Kusuka ku-Analog Sensors kuya ku-Digital "Eyes"

Izinhlelo zokuqala zokukhanya kwemigwaqo zisebenzisa ama-sensor e-inductive loop—afakwe phansi kwemigwaqo ukuze athole izimoto zensimbi. Lezi zinsiza zazineziphene ezinkulu: azikwazi ukuqaphela abantu abahamba ngezinyawo, amabhayisikili, noma izimoto ezingensimbi (njengezithuthuthu zikagesi), futhi zaphumelela ezimweni zezulu ezinzima (ukhukhula, imvula enamandla).
Amamojula wekhamera aguqule lokhu ngokuhlinzeka ngemininingwane yesimo esibonakalayo, 2D/3D. Ngokwehlukana nezixhumanisi, zibona yonke indawo yokuhlangana: izimoto, abahambi, abakhweli bezithuthuthu, futhi ngisho nezithiyo (njengemoto ephukile). Amalensi anokucaca okuphezulu (1080p kuya ku-4K) kanye nezinsiza zokukhanya okuphansi ziqinisekisa ukuveza kahle ngosuku nasentambama, ziqeda izindawo ezingenakubona ezakha ukuhamba okuphazamisekile noma izingozi.

2. Kusuka ku-"Reactive" kuya ku-"Predictive" Management

Izinhlelo zendabuko ziphendula emgwaqweni ngemva kokuthi kube nokwakheka—isb., i-timer ingase ibhade ibe mnyama emgwaqweni ohlangothini kuphela ngemva kokulinda okungama-2 imizuzu, noma ngabe awekho amakhaya lapho. Amamojula wekhamera, ahlangene ne-AI, aguqula lokhu kube ukuphathwa kokubikezela. Ahlaziya amaphethini emgwaqweni ngesikhathi sangempela (isb., "50 amakhaya efika ukusuka enyakatho, 5 abantu abahamba ngezinyawo endaweni yokudlula") futhi alungisa izikhathi zezimpawu ngemizuzwana, ehla isikhathi sokulinda okungadingekile futhi igcine ukuhamba kwemoto.

3. Kusuka kuMishini Ezinhlobonhlobo iye kuMishini Exhunywe

Izikhangiso zesimanje azihlukile. Zihlanganisa nezikhungo zokuphathwa kwemigwaqo yedolobha (TMCs) nge-4G/5G noma amafayibha, zabelana ngedatha ezindaweni eziningi zokuhlangana. Le "ngqondo ehlanganisiwe" ivumela amadolobha ukuthi aphathe ukuhamba kwemoto ezingeni lesifunda—isibonelo, uma ikhamera ibona ingozi eMain Street, ingashintsha izimpawu emigwaqweni eseduze ukuze ibheke ukuhamba kwemoto futhi ivimbele ukuhlinzeka kokuhamba okukhulu.

Amandla Ayinhloko: Lokho Okwenziwa Ngamamojula Ekhompyutha Ezinhlelweni Zokukhanya Kwezimoto

Amamojula ekhamera awagcini nje ngokuthi "recording" izindawo zokuhlangana—ngokuyisisekelo, enza izinqumo ezisebenzayo. Amandla awo, aphakanyiswa ubuchwepheshe bokubona ngekhompyutha kanye ne-AI, abhekana nezinselelo eziphuthumayo zokuhamba. Nansi indlela asebenza ngayo emsebenzini:

1. Ukutholwa Kwezimoto Okunembile & Ukuhlaziywa Kwezimoto Zokuhamba

Umsebenzi oyisisekelo (kodwa obalulekile) wezikhangiso zezimoto zezimoto zokukhanya kwemigwaqo ukuhlela nokubala izimoto. Ama-algorithms e-AI ahlukanisa phakathi kwezimoto, amatekisi, amabhasi, nezithuthuthu, bese ebala:
• Zingaki izimoto ezilindele emikhakheni ngayinye.
• Ijubane lemoto (ukuhlonza ukuhamba kancane ngaphambi kokuba kube nezithiyo).
• Ubude bokulinda (ukubeka phambili imigwaqo enezikhathi ezinde zokulinda, njengokwenziwa ngesikhathi sokuphuma emsebenzini).
Isibonelo, endaweni ye-Loop eChicago, amamojula wekhamera anciphise isikhathi sokulinda esiqondile ngesi-22% ngokwandisa ukukhanya okuluhlaza kuphela uma imikhankaso idlula izimoto eziyi-10—gwenya ukusetshenziswa "kokukhanya okuluhlaza okungenalutho" okwenziwa yizikhathi ezijwayelekile.

2. Ukuphepha Kwabagibeli Nabagibeli Bezimoto: Abasebenzisi "Abangabonakali"

Abagibeli nabagibeli bezithuthuthu bavame ukungabhekwa yizinhlelo zokuhamba ezindala, okuholela ezingeni eliphezulu lokungcoliswa (i-WHO ibika ukuthi u-27% wezingozi zomgwaqo ziwabantu abahamba ngezinyawo). Imodyuli zekhamera ixazulula lokhu ngekhono lokuthola abantu abahamba ngezinyawo:
• Bakhomba abantu abahamba ngezinyawo abalindele ezindaweni zokuwela (ngisho noma bengacindezeli inkinobho ethi "hamba") futhi baveza ukukhanya okubomvu okuphakeme kwezithuthi.
• Kubagibeli, bathola imigwaqo yezithuthuthu futhi balungisa izimpawu ukuze banikeze abagibeli ithuba lokuqala (i-"bike green wave")—kwehlisa ukuhlanganiswa nezimoto ezijikayo.
eCopenhagen, idolobha elaziwa ngengqalasizinda efanelekile kumabhayisikili, izibani zomgwaqo ezinezikhamuzi zinciphisa izingozi zabagibeli ngamaphesenti angama-18 emnyakeni wazo wokuqala zokusetshenziswa.

3. Ukuhlela Kwesikhathi Kwezimpawu Ngalesi sikhathi

Lokhu kuyindawo lapho ama-module wekhamera ethola khona inzuzo enkulu yokusebenza. Esikhundleni sokusebenzisa izikhathi eziqinile, asebenzisa ukulungiswa okuguquguqukayo:
• Uma ikhamera ibona izimoto eziyi-30 emgwaqweni omkhulu kodwa kuphela ezi-2 emgwaqweni ohlangothini, ikwandisa isikhathi sokukhanya okuluhlaza emgwaqweni omkhulu ngama-30 asekondi.
• Ngexesha lemidlalwano engaphakanyisiwe (isb. 2 AM), inciphisa zonke izikhawu zeziqhamo zibe yimizuzu engama-45 (phansi ukusuka kumaminithi angama-90) ukuze kuncishiswe isikhathi sokulinda kwabashayeli bephakathi kobusuku.
Ucwaningo olwenziwe yiMnyango Wezokuthutha wase-U.S. luthole ukuthi isikhathi sokukhanyisa esiguquguqukayo, esiqhutshwa ngamakhompyutha, sinciphisa isikhathi sokuhamba sonke ngama-15–20% futhi sinciphisa ukuhamba okuphazamisekile ngama-30%.

4. Ukuhlonza Izinkinga: Ukubamba Izinkinga Ngaphambi Kokuthi Zikhule

Amamojula ekhamera asebenza njenge "zibalo zomgwaqo" ezingu-24/7 ngokuhlonza izenzakalo ezingajwayelekile eziphazamisa ukuhamba:
• Izingozi: I-AI ibona izimoto ezimisiwe noma udoti futhi ibika ku-TMC ngokushesha, ukuze amaqembu akwazi ukuphendula ngokushesha.
• Umsebenzi ongekho emthethweni: Bahlola ukuhamba kwezimoto eziphakeme noma ukuhamba ngokushesha, nakuba amadolobha amaningi esebenzisa le datha ukuze kuqinisekiswe ukuphepha (hhayi nje ukuhlinzeka ngamathikithi)—isibonelo, uma ikhamera ibona ukuhamba kwezimoto eziningi eziphakeme emgwaqweni, ifaka isikhathi esingama-2 sekuhlale "kubomvu" ukuze ivimbele ukuhlanganiswa.
• Izinkinga ezihlobene nesimo sezulu: Ezinye izimodyuli ezithuthukisiwe zisebenzisa ukubona ngekhompyutha ukuze ziqaphele imvula, iqhwa, noma umswakama futhi zilungise izikhathi zezimfanelo (isb., ukukhanya okukhanyayo okude kakhulu kwezimoto ezihamba kancane eqhweni).

Umthelela Wangempela: Izifundo Zecala Zezibani Zokuhamba Ezisebenzisa Ikhamera

Izibalo zikhuluma ngendaba, kodwa izibonelo zangempela zikhombisa ukuthi ama-module wekhamera ahumusha kanjani ukuhamba kahle emadolobheni. Nansi eminye imikhankaso emibili ephawulekayo:

Case 1: Iphrojekthi ye-"Smart Mobility 2030" yaseSingapore

Singapore, eyinye yezindawo ezihlala abantu abaningi emhlabeni, isebenzisa ama-module we-3D camera (anezobuchwepheshe bokuhlola ubukhulu) ezikhungweni ezingaphezu kwe-500. Lezi zikhala:
• landela izimoto, abantu abahamba ngezinyawo, kanye nabagibeli emkhathini we-3D, ukunciphisa amaphutha avela ezithombeni noma ezinto ezihlangene.
• Hlanganisa ne-"Virtual Traffic Hub" yaseSingapore—iplatifomu ephakathi esebenzisa idatha yekhamera ukuhlela ukuhamba kwemoto imizuzu engu-15–30 ngaphambi.
Imiphumela? Isikhathi sokuhamba ngesikhathi sokuphakama kwezimoto sehle ngama-19%, futhi inani le-carbon emissions elihlobene nezokuhamba lehla ngama-12%. Idolobha liphinde labika ukwehla kwama-25% ezingozi zabagibeli, ngenxa yokugxila kokuhamba kwezithombe ezithathwe kumakhamera.

Case 2: Iphrojekthi ye-"Superblocks" yeBarcelona

I-BARCELONA "SUPERBLOCKS" (IZIFUNDA EZILUNGILE KUBANTU) ZIDINGA IMODULI ZEKHAMERA UKUBALANSA UKUFIKELA KWEZIMOTO NOKUPHEPHA KWEZINYATHELO. IKHAMERA EZINGENI ZESUPERBLOCK:
• Thola ukuthi imoto ingeyom resident wendawo (ngokusebenzisa ukuqashelwa kwezimoto, esetshenziswa kuphela ukuze kulawulwe ukufinyelela, hhayi ukubhekwa).
• Vumela izimoto zabahlali ukuba zingene nge-10-sekhondi eluhlaza, kanti izimoto ezingabahlali ziqondiswa emigwaqweni yangaphandle.
• Phakamisa amabhasi nezimoto eziphuthumayo, uqinisekise ukuthi azingcwathelwa ezindaweni ezinabantu abaningi.
Kusukela ngo-2020, ama-superblock anama-traffic lights asekelwe kumakhamera abone ukwehla kwezimoto ngo-40% nokwanda kwemisebenzi yabagibeli ngo-35%—okwenza imigwaqo iphephe futhi ibe nempilo engcono.

Izinto Eziyinhloko Okufanele Zicatshangelwe Ekufakeni Ama-Module Wekhamera Ezinhlelweni Zokuhamba

Ngenkathi imodyuli yekhamera inikeza izinzuzo ezinkulu, amadolobha adinga ukuhlela ngokucophelela ukuze agweme izinkinga ezivamile. Nansi emithathu ebalulekile okufanele ibekwe phambili:

1. Ukuhlala Kwendalo: Kwenziwe Ngaphandle

Amakhamera ezokuthutha asebenza ezimeni ezinzima—ukushisa okukhulu (kuze kube ngu-120°F/49°C), ubanda obukhulu (-20°F/-29°C), imvula enzima, kanye nothuli. Ukuze kuqinisekiswe ukuhambisana:
• Khetha imodyuli ezineziqinisekiso ze-IP66/IP67 (ezivikelekile emanzini nasezithunzini).
• Khetha izinhlelo zokuphatha ukushisa (njengama-heat sink noma amafan) ukuvimbela ukushisa kakhulu ezindaweni ezishisayo.
• Sebenzisa amagalasi aphikisa ukukhanya ukuze ugweme ukuwashwa okubangelwa ukukhanya kwelanga ngqo noma izibani ezikhanyayo ebusuku.
Amakhamera akhiwe kabi angaphumelela ezimeni zezulu ezinzima, okuholela ekuphuleni kwezimpawu nasekukhuleni—ngakho-ke ukuqina akukwazi ukuxoxiswana.

2. Ukuhambisana Kwesistimu: Gwema "Tech Silos"

Amadolobha amaningi asevele anezinhlelo zokusebenza zokuhamba (isb., abaphathi bezimpawu zakudala, isoftware ye-TMC). Imodyuli yekhamera kumele ihlanganiswe nalezi zinhlelo ukuze isebenze kahle:
• Bheka ama-moduli asekelayo izivumelwano ezivulekile (njenge-MQTT noma i-REST API) ukuze uxhumane nezinkundla ezahlukene ze-TMC.
• Qinisekisa ukuhambisana ne-software ye-AI—amanye amadolobha akhetha ukusebenzisa amamodeli abo e-AI (isb., ukuze kuhlolwe izimo zomgwaqo zendawo), ngakho-ke ama-modules kufanele avumele ukuhlanganiswa kwe-algorithm eyenziwe ngokwezifiso.
Izinhlelo ezingahambelani zikhokelela ezikhathini zedatha—isb., ikhamera engakwazi ukwabelana ngedatha ne-TMC ngeke ivumele isikhathi sokuhlonza esiguquguqukayo.

3. Ukuvikeleka Kwedatha & Ubumfihlo: Ukwakha Ukwethembana Nabahlali

Amamojula ekhamera aqoqa idatha ebonakalayo ebucayi, ngakho amadolobha kumele abhekane nezinkinga zobumfihlo ukuze athole ukwesekwa komphakathi:
• Fihla idatha: Sebenzisa i-AI ukuze uthumele izimpawu zezimoto nezindawo zobuso ngesikhathi sangempela, ukuze kuphela izindlela zokuhamba (hhayi abantu/izimoto ngabanye) zigcinwe.
• Limit data retention: Susa ividiyo elingcwele ngemva kwezinsuku eziyi-24–48 (gcina kuphela idatha ehlanganisiwe, efana nokuthi "izimoto eziyi-100 zedlule lapha ngo-8 AM").
• Yiba sobala: Shicilela umthetho wobumfihlo ochaza ukuthi yiziphi idatha eqoqwayo, ukuthi isetshenziswa kanjani, nokuthi ubani onokufinyelela (isb. kuphela abasebenzi be-TMC, hhayi abantu besithathu).
Amadolobha afana nePortland, e-Oregon, aphumelele ukufaka izinhlelo zamakhamera ngokubamba imihlangano yomphakathi ukuze baxazulule ukukhathazeka ngokuqinisekiswa kobumfihlo—okuholele ekutheni kube nokwesekwa kwabantu okungu-78% kule teknoloji.

Ikusasa: Yini elandelayo kuma-Module weKhamera kuMphakathi Wokuphathwa Kwezithuthi?

Ithuthukiswa kobuchwepheshe bekhamera kushesha, futhi isizukulwane esilandelayo samamojula wezibani zomgwaqo sizoba sihlakaniphile futhi sixhumekile. Nansi emithathu yemikhuba okufanele uyibheke:

1. 5G + Edge Computing: Ukucubungula Idatha Ngokushesha, Ngokuphumelelayo

Amamojula ekhono wamanje avame ukuthumela idatha kwi-TMC ephakathi ukuze iphathwe, okungaholela ekubambezelweni (kuze kube sekukhathazekeni okungama-1–2 amasekhondi) ekulungisweni kwezimpawu. I-5G kanye ne-edge computing kuzoshintsha lokhu:
• Amakhamera azokwenza umsebenzi wedatha endaweni (emngceleni) asebenzisa ama-chips e-AI amancane, anamandla, okunciphisa isikhathi sokulinda sibe yimizuzwana.
• I-5G izovumela ukuxhumana ngesikhathi sangempela phakathi kwamakhamera ezikhungweni eziseduze—isb. ikhamera ku-5th Street ingabelana ngedatha nekhamera ku-6th Street emizuzwini engu-0.1, idala "i-green wave ehlelekile" yokuhamba kwemoto.
Lokhu kuzokwenza ukuphathwa kwemigwaqo kube nokuphendula kakhulu, ikakhulukazi ezindaweni ezinamandla aphezulu ezifana nezindawo zedolobha.

2. AI Amamodeli Amakhulu: Ukuhlela Ukuhamba Okubikezelwayo

I- AI yanamuhla ingahlaziya ukuhamba kwemoto ngesikhathi sangempela, kodwa amamodeli amakhulu ezilimi (LLMs) azayo azokwazi ukubikezela amaphethini ezinsuku noma ezinyangeni ezizayo:
• Idatha yekhamera (ehlanganiswe nezimo zezulu, imicimbi, nezinhlelo zokuhamba zomphakathi) izovumela amadolobha ukuthi alungise isikhathi sezimpawu ngaphambi kwemicimbi efana nemicimbi yomculo, imidlalo, noma ezinsukwini ezinomoya.
• Isibonelo, uma ikhamera ibona ukuthi abantu abangu-5,000 bayaphuma esikhumulweni sezemidlalo njalo ngeSonto ngo-5 PM, i-TMC ingakwazi ukuhlinzeka ngokuqhubekayo ukukhanya okuluhlaza emigwaqweni eseduze ukuze ibhekane nokwanda—ngaphambi kokuthi ithrafikhi iqale.

3. V2X Ukuhlanganiswa: Amakhamera "Akhuluma" Nezimoto

Ithuluzi le-Vehicle-to-Everything (V2X) livumela izimoto ukuba zixhumane nezibani zomgwaqo, amafoni abantu abahamba ngezinyawo, nezinye izimoto. Amamojula wekhamera azoba yingxenye ebalulekile yale ndawo yokusebenza:
• Amakhamera azobona abantu abahamba ngezinyawo futhi athumele izaziso kumakhadi asondelayo (isb., "Umuntu ohamba ngezinyawo udlula phambili—nciphisa ijubane").
• Bazokwenza ukwabelana ngemininingwane yesignali yesikhathi sangempela nezimoto ezixhunyiwe (isb., "Iphuzu eliluhlaza liphela emizuzwini eyi-10—ungasheshisi") ukuze banciphise ukuhamba ngophawu olubomvu nokumisa okungazelelwe.
Lokhu kuzokwakha "inethiwekhi yokuhamba exhunywe" lapho amakhamera, izimoto, kanye nezinsiza zisebenza ndawonye ukuze ziqedele izingozi nokuhluleka.

Isiphetho: Amamojula Wekhamera Ayinhliziyo Yezokuthutha Ezihlakaniphile

Ukuphathwa kwezibani zomgwaqo kwakukhona ngama-timer nokucabanga—kodwa amamojula wekhamera aguqule lokhu kwaba yisayensi esekelwe kudatha. Ngokuhlinzeka ngombono wesikhathi sangempela, ukulungiswa kwesignali okuguquguqukayo, nokuphepha kwabagibeli/abakhokheli, baxazulula izinselelo ezinkulu zokuhamba edolobheni: ukunciphisa ukuhwebelana, ukunciphisa ukukhishwa, nokusindisa izimpilo.
Ngemizi efuna ukwakha imigwaqo ehlakaniphile, engcono yokuhlala, amamojula amakhamera awawona nje "okuhle ukuba nakho"—kuyadingeka. Njengoba ubuchwepheshe buqhubeka (ngehla kwe-5G, i-AI, ne-V2X), umthelela wabo uzokhula kuphela, wenze ukuhamba kwedolobha kube lula, kuphephile, futhi kube nokusimama kubo bonke.
Uma ungumhleli wedolobha, injineli yezokuthutha, noma umholi wezobuchwepheshe ofuna ukufaka izinhlelo zokuthutha ezisebenzisa amakhamera, okubalulekile ukuhlinzeka ngokuqina, ukuhambisana, nokuvikeleka. Ngendlela efanele, ama-module amakhamera angaguqula ukuthutha kwedolobha lakho kusuka ekukhathazekeni kube umshini osebenza kahle.
Ukuphathwa kwemigwaqo ye-AI, ukuphathwa kwemigwaqo okuhlakaniphile
Uxhumane
Sicela uxhumane nathi uhambele

Mayelana nathi

Usizo

+8618520876676

+8613603070842

Izindaba

leo@aiusbcam.com

vicky@aiusbcam.com

WhatsApp
WeChat