Isifundo Sokucwaninga: Amakhamera Okubona Ubukhulu kuRobotics – Ukuguqula Ukuqina Nokusebenza

Kwadalwa ngo 11.13
Emhlabeni wezobuchwepheshe bokwenziwa, ukubona kubalulekile. Kweminyaka eminingi, amakhamera e-2D abeke imikhawulo kumarobhothi ekuboniseni okuphakeme—ashiya izikhala ekwahlukaniseni ibanga, ekuqondeni izinto, nasekuzivumelaneni ngesikhathi sangempela. Namuhla, amakhamera okukhanya okujulile avele njengoshintsho lomdlalo, ehlanganisa amarobhothi ngokuqonda.3D “amehlo”okuthile okukhumbuza ukuqonda kwesikhala komuntu. Le ndaba yocwaningo ihlola izicelo zangempela zobuchwepheshe bokuhlola ukujula ezimbonini, ibheka ukuthi kanjani ixazulula izinselelo ezindala ze-robotics futhi ivula amathuba amasha.

1. I-Why: Kungani Ukuqonda Ubukhulu Kubalulekile Kwezobuchwepheshe Be-Robotics

Ngaphambi kokungena ezicini zocwaningo, ake sikhanyise ngenani eliyisisekelo lamakhamera okuthola ubukhulu. Ngokwehlukile kumakhamera e-2D athatha kuphela umbala nokwakheka, amakhamera okuthola ubukhulu akala ibanga phakathi kwamakhamera nezinto ezikwenkambu. Lokhu kudala "imephu yobukhulu"—i-3D blueprint esetshenziswa ama-robot ukuze:
• Hamba ezindaweni ezixakile ngaphandle kokuhlangana
• Bamba izinto ezihlukahlukene ngezimo/nobukhulu ngokunembile
• Qaphela futhi uhlukanise izinto ezimweni zokukhanya okuphansi noma eziphakeme zokuphikisana
• Lungisa ukuhamba ukuze kuhambisane nezimo ezishintshashintshayo (isb., abantu abahambayo noma impahla eshintshashintshayo)
Izobuchwepheshe ezintathu eziphakeme zokuhlola ukujula zisebenza kumarobhothi anamuhla:
• Time-of-Flight (ToF): Ikhipha ama-pulse okukhanya futhi ibala ibanga ngokukala ukuthi ukukhanya kuthatha isikhathi esingakanani ukubuyela emuva (ifanele ama-robot ahamba ngokushesha).
• Uhlanga Olwakhiwe: Lukhombisa iphethini (isb., igebe) phezu kwezindawo; ukuguquguquka kwephethini kukhombisa ukujula (ukunemba okuphezulu emisebenzini eseduze).
• I-Stereo Vision: Isebenzisa amakhamera amabili ukuze ikopishe ukubona kwabantu ngezindlela ezimbili, iqhathanisa izithombe ukuze ibale ukujula (okungabiza kancane kuma-robot angaphandle).
Manje, ake sithathe isikhathi sokuqhathanisa ukuthi lezi zinkampani zixazulula kanjani izinkinga zangempela emikhakheni emine ebalulekile.

2. Ucwaningo Lwecala 1: I-Robotics Yezimboni – Ukuqinisekisa Ukunemba Kwe-BMW’s Assembly Line

Inselelo

I-BMW's Spartanburg, e-South Carolina, ikhiqiza ngaphezu kwama-400,000 izimoto ngonyaka. Izandla zayo ze-robot zazibhekene nomsebenzi obalulekile: ukukhetha nokubeka izingxenye ezincane, ezihlukahlukene (isb. ama-wiring harnesses) kumafreyimu ezimoto. Amakhamera ajwayelekile e-2D aphumelele ngezindlela ezimbili:
1. Abakwazi ukuhlukanisa phakathi kwezinto ezihlangene, okuholele ekutheni baphazamise.
2. Ukwehluka kokukhanya (isb., ukukhanya okukhanyayo phezulu vs. izikhala ezimnyama) kwaphambanisa ukuqashelwa okusekelwe kumbala.

Isixazululo

BMW ubambisene ne-ifm Electronic ukuhlanganisa amakhamera e-ToF depth ezandleni ezingu-20+. Amakhamera:
• Ukwakhiwa kwamamephu e-3D depth ngesikhathi sangempela ye-bin yezingxenye, kugqamisa izingxenye ezithile.
• Lungiselelwe ukuze kuhlangabezane nezinguquko zokukhanya ngokugxila kudatha yokukude, hhayi umbala noma ukukhanya.

Imiphumela

• Izinga lephutha lehla ngo-78% (lisuka ku-12 misgrabs ngeshifti laya ku-2.6 misgrabs ngeshifti).
• Isikhathi sokujikeleza sisheshiswe ngama-15%: Ama-robot awasaphumuli ukuze “aphinde ahlole” izikhundla zezingxenye.
• Ukuphepha kwabasebenzi kuthuthukisiwe: Ukwehla kokusebenza kwezimboni ze-robot kunciphise isidingo sokungenelela kwabantu emgqeni.
“Ukukhomba ukujula kushintshe ama-robot ethu ukusuka 'ekuboniseni okuphansi' kuya 'ekuboniseni okucacile,'” kusho uMarkus Duesmann, uMphathi Wokukhiqiza we-BMW. “Manje sithatha izingxenye ezingu-20% ezingaphezulu ngehora ngaphandle kokwehlisa ikhwalithi.”

3. Ucwaningo Lwecala 2: I-Robotics Yezolimo – Ama-Drones KaJohn Deere Okubona Izihlahla Zokuhlobisa

Inselelo

Ama-robot we-See & Spray Select kaJohn Deere aklanyelwe ukunciphisa ukusetshenziswa kwe-herbicide ngokugxila kuphela ezithelweni (hhayi ezitsheni). Imodeli zokuqala zisebenzisa amakhamera e-2D ukuze zihlukanise izitshalo, kodwa zazibhekene nezinselelo ezilandelayo:
1. Ukuhlukanisa phakathi kwezihlahla ezincane nezitshalo zokulima (kokubili kubukeka kufana ku-2D).
2. Ukusebenza endaweni engalingani: Ibhakabhaka entabeni ingavela “ifana nosayizi” njengokhula emathafeni.

Isixazululo

UJohn Deere uthuthukise ama-robot ngezikhamuzi zokubona ezine-stereo vision ezihlanganiswe ne-AI. Lezi zikhala:
• Dale 3D imodeli zezimboni, zilinganisa ukuphakama kwezitshalo kanye nomthamo (izihlahla eziphikisanayo ngokuvamile zifushane kunezithombo zekhanda/izithombo ze-soybean).
• Ubulunga obubalwa phansi, lungisa ama-nozzle okuphonsa ukuze uqonde izihlahla eziphakeme kahle (2–4 inches phezulu).

Imiphumela

• Ukusetshenziswa kwe-herbicide kwehlelwa ngama-90% (kusuka kumagaloni ama-5 ngehektha kuya kumagaloni ama-0.5 ngehektha).
• Ukukhiqiza kwezolimo kukhuphuke ngo-8%: Ukuncipha kokuphonswa kwe-herbicide okungafunwa kuvikele izitshalo ezincane.
• Ukusebenza kwe-robot kukhuphukile kabili: Idatha ye-3D ivumele ama-robot ukuthi abheke amahektare angama-20 ngehora (ukhuphuke ukusuka kumahhektare angama-10 ngekhamera ye-2D).
“Ukuthola ubukhulu akukhulisisanga kuphela ama-robot ethu—kwashintsha indlela abalimi abathatha ngayo ukuvikelwa kwemvelo,” kubeke wathi uJahmy Hindman, u-CTO kaJohn Deere. “Abalimi bagcina imali ngezinto zokwakha ngenkathi behlisa umthelela emvelweni.”

4. Ucwaningo Lwecala 3: I-Robotics Yezokwelapha – Ukulungiswa Kwezinqubo Zokuhamba Kwe-ReWalk’s Exoskeleton

Inselelo

ReWalk Robotics yakha ama-exoskeletons ukusiza abantu abanezinxushunxushu zomgogodla walk futhi. Ama-exoskeletons ayo okuqala asebenzisa amakhamera e-2D ukulandela ukuhamba komsebenzisi, kodwa babhekene nenkinga ebalulekile:
1. Abakwazi ukuthola ukushintsha okuncane kokuma (isb., ukuhamba kwesokunxele noma ubude bezinyathelo obungalingani).
Lokhu kuholele ekudumazekeni, kwehlisa ibhalansi, futhi kwezinye izimo, uk fatigue komsebenzisi.

Isixazululo

ReWalk ihlanganise amakhamera okukhanya okuhlelekile ematheni nasezinyaweni ze-exoskeletons. Amakhamera:
• Ulandelelwa ukuhamba kwejoints kwe-3D (i-hip, i-knee, i-ankle) ngesikhathi sangempela, kukalwa ukuphakama kwesinyathelo, ububanzi, nokulingana.
• Thumele idatha ku-AI ye-exoskeleton, eyalungisa ukucindezela kwemoto ukuze ilungise izinyathelo ezingalingani (isb., ukuphakamisa unyawo oluph weaker phezulu).

Imiphumela

• Izinga lokunethezeka komsebenzisi lenyuke ngama-65% (ngokusekelwe ezivivinyweni zokusebenzisa).
• Ukuzinza kokulinganisa kukhuphukile ngo-40%: Abasebenzisi abambalwa badinga usizo lokuhamba (isb. umgibeli) ngenkathi besebenzisa i-exoskeleton.
• Inqubo yokwelashwa komzimba isheshisiwe: Abaguli bafinyelele “ukuhamba ngokuzimela” ngo-30% ngokushesha kunezimodeli ezine-2D.
“Kwabasebenzisi bethu, isinyathelo ngasinye sibalulekile,” kusho uLarry Jasinski, uMongameli weReWalk. “Ukuzwa ukujula kuvumela i-exoskeleton ‘ukuzwa’ ukuthi umsebenzisi uhamba kanjani—hhayi nje ukubona. Lokho kuyahlukanisa phakathi kokuthi ‘uhambe’ nokuthi ‘uhambe ngokunethezeka.’”

5. Case Study 4: Logistics Robotics – Fetch’s Warehouse AGVs

Inselelo

I-Fetch Robotics’ Freight1500 autonomous guided vehicles (AGVs) ithutha amaphakheji ezinqolobaneni. Izinhlelo zayo zokuhamba ezisekelwe kumakhamera e-2D zaba nezinkinga nge:
1. Ukuphahlazeka nezithiyo ezisebenzayo (isb., abasebenzi walking phakathi kwezinqwaba, amabhokisi awela).
2. Ukungaboni kahle ezindaweni ezinkulu zokugcina: Amakhamera e-2D awakwazi ukukala ibanga kumashalofu akude, okuholela eziphambukisweni ezingu-2–3 intshi.

Isixazululo

Fetch ithuthukise ama-AGVs ngekhamera ye-ToF depth kanye nesofthiwe ye-SLAM (Simultaneous Localization and Mapping). Amakhamera:
• Kutholakale izinto ezihambayo ezikude kufika kumamitha angama-10, okuvusa i-AGV ukuthi ihlise isivinini noma ime.
• Dale 3D maps ze-warehouse, zehlisa iphutha lokubeka laya ku-0.5 inches (okubalulekile ekulayisheni/nokukhulula ezindaweni ezithile ze-shelf).

Imiphumela

• Izinga lokuhlangana lehla ngo-92% (lisuka ekuhlanganyeleni okukodwa njalo emashumini amahlanu ezinsukwini ukuya ekuhlanganyeleni okukodwa njalo emashumini ayisithupha ezinsukwini).
• Ukuphuma kwe-warehouse kukhule ngama-25%: Ama-AGV achithe isikhathi esincane evikela izithiyo futhi achithe isikhathi esiningi ehambisa amaphakheji.
• Izindleko zabasebenzi zehlisiwe ngo-18%: Ukuncipha kokuhlangana kusho isikhathi esincane esichithwa ekugcineni i-AGV nasekulungiseni amaphakheji.

6. Izinselelo Eziyinhloko & Izifundo Ezifundiwe

Ngenkathi ukujula kokuhlola kushintshile ubuchwepheshe bezokwenziwa, lezi zifundo zikhombisa izinselelo ezivamile:
1. Ukuphazamiseka Kwemvelo: Amakhamera e-ToF abhekana nezinkinga ekukhanyeni kwelanga ngqo (i-BMW ifake izithombe zelanga), futhi ukukhanya okuhlelekile kuyahluleka ezindaweni ezinothuli (i-ReWalk isebenzise izikhwama zamakhamera ezingenamanzi, ezivikelayo kuthuli).
2. Umthwalo Wokubala: Idatha ye-3D idinga amandla amaningi okucubungula—uJohn Deere udlulisele idatha kumakhompyutha asemgqeni ukuze agweme ukuhamba kancane.
3. Izindleko: Amakhamera aphezulu angabiza u-500–2,000, kodwa ukuhweba okukhulu (isb., i-Fetch ithenga amakhamera angama-10,000+) kwehlisa izindleko zedivayisi ngayinye ngama-30%.
Izifundo Zezithombe Zamaqembu E-Robotics:
• Hlanganisa ubuchwepheshe bokujula nomsebenzi: I-ToF yokushesha, ukukhanya okuhlelekile kokunemba, ukubona kwe-stereo ngezindleko.
• Testa ezimeni zangempela kusenesikhathi: Imiphumela yeLab ivame ukungakhombisi uthuli lwemboni noma imvula yezolimo.
• Hlanganisa ne-AI: Idatha yokujula kuphela inamandla, kodwa i-AI iyiguqula ibe imibono esebenziseka (isb., Ukulungiswa kokuhamba kwe-ReWalk).

7. Iziqondiso Zesikhathi Esizayo: Yini Elandelayo Yokuhlola Ukujula KwiRobotics?

Izifundo ezingenhla ziqala nje. Izinhloso ezintathu zizokwakha ikusasa:
1. Miniaturization: Amakhamera aphansi amancane (isb. IMX556PLR kaSony, isikhala esingu-1/2.3-intshi) azohambisana namarobhothi amancane (isb. ama-drone okusebenza).
2. Ukuhlanganiswa Kwezinsiza Eziningi: Amarobhothi azohlanganisa idatha yokujula ne-LiDAR kanye nemifanekiso ye-thermal (isb., amarobhothi ezolimo athola izihlahla eziphilayo ngejula + izinga lokushisa).
3. Ukuhlanganiswa kwe-Edge AI: Amakhamera anama-chips e-AI akhiwe ngaphakathi (isb., NVIDIA’s Jetson Orin) azokwenza kusebenze idatha ye-3D ngesikhathi sangempela, akhiphe ukuhamba kancane kwezimoto ezihambayo (isb., ama-AGV ezitolo).

8. Isiphetho

Izithombe zokuhlola ubukhulu seziye zathuthuka ubuchwepheshe bokwenza imishini baphumelele ekuboniseni 'ukubona' baye 'kuqonda.' Kusukela emigqeni yokuhlanganisa ye-BMW kuya ezithombeni ze-ReWalk, lezi zifundo zikhombisa ukuthi ukubona kwe-3D kusiza ekuxazululeni izinkinga ezibalulekile—kwehlisa amaphutha, kwehlisa izindleko, futhi kuvule amathuba amasha. Njengoba ubuchwepheshe buhamba phambili futhi izindleko zehla, ukuhlola ubukhulu kuzoba yijwayelelo kuzo zonke izinhlelo zokusebenza, kusukela kumishini yokuhlinza encane kuya ezandleni ezinkulu zezimboni.
Kubantu bezinkampani ze-robotics abafuna ukuhlala bephumelela, umyalezo ucacile: Investa ekutholeni ubukhulu. Akusikho nje “okuhle ukuba nakho”—kuwumgogodla wesizukulwane esilandelayo sama-robot akhanyayo, akhululekile.
ubuchwepheshe bokuhlola ubukhulu, izinhlelo zokusebenza ze-robotics, ukubona kwe-3D
Uxhumane
Sicela uxhumane nathi uhambele

Mayelana nathi

Usizo

+8618520876676

+8613603070842

Izindaba

leo@aiusbcam.com

vicky@aiusbcam.com

WhatsApp
WeChat